4
phiếu
1đáp án
868 lượt xem

Chứng minh: $\Sigma ab(a+1)>2.$

Cho $\left\{ \begin{array}{l} a,b,c\in [0;1] \\a+b+c=2 \end{array} \right..$ Chứng minh: $\Sigma ab(a+1)\geq 2.$
3
phiếu
1đáp án
613 lượt xem

Bất đẳng thức

Cho các số thực dương $a,b$ thỏa mãn $a^2+b^2+1=3b$.Tìm giá trị nhỏ nhất của $P=\frac{1}{(a+1)^2}+\frac{4}{(b+2)^2}$
12
phiếu
0đáp án
591 lượt xem

BĐT nha mn

CMR:Với mọi số thực $a_1,a_2,....a_{2n}$ và $b_1,b_2,....b_{2n}$.ta có BĐT$\sum_{k=1}^{2n}a_k^{2}\sum_{k=1}^{2n}b_k^{2} -(\sum_{k=1}^{n}(a_{2k} b_{2k-1} -a_{2k-1}b_{2k}))^{2}\geq (\sum_{k=1}^{2n}a_k b_k)^{2} $
9
phiếu
1đáp án
732 lượt xem

giúp e ak

trục mẫu căn thức$\frac{\sqrt{m^{2}+n^{2}}+m}{m-\sqrt{m^{2}+n^{2}}}$
4
phiếu
0đáp án
466 lượt xem
10
phiếu
1đáp án
1K lượt xem

bất nữa

Cho các số thực dương: $a,b,c$. C/m: $\frac{a+b}{\sqrt[3]{a^3+abc}}+\frac{b+c}{\sqrt[3]{b^3+abc}}+\frac{c+a}{\sqrt[3]{c^3+abc}}\geq3\sqrt[3]{4}$
5
phiếu
1đáp án
1K lượt xem
9
phiếu
1đáp án
671 lượt xem

BĐT Tổng quát(5)

Cho $k$ là 1 số thực thuộc khoảng $\left[ {-1;2} \right]$& $a,b,c$ là 3 số thực đôi một khác nhau.CMR:$\left[ {a^{2}+b^{2}+c^{2}+k(ab+bc+ca)} \right].(\frac{1}{(a-b)^{2}}+\frac{1}{(b-c)^{2}}+\frac{1}{(c-a)^{2}})\geq \frac{9(2-k)}{4}$
12
phiếu
1đáp án
1K lượt xem

BĐT Tổng quát(4)

Cho các só $a,b,c$ không âm thỏa mãn $a+b+c=k$.CMR:$(a^{3}+b^{3})(b^{3}+c^{3})(c^{3}+a^{3})\leq \frac{k^{9}}{256}$P/s:Trình bày bằng nhiều...
11
phiếu
1đáp án
931 lượt xem

BĐT nè mn !

Cho $a,b,c$ là các số thực dương không nhỏ hơn 1.Tìm $Min$P =$\frac{1}{1+a^{6}}+\frac{2}{1+b^{3}}+ \frac{3}{1+c^{2}} +6\sqrt{1+abc(abc-1)}$
8
phiếu
1đáp án
1K lượt xem

dao nay nhieu thanh mat nick wa dang bai cho kiem lai dv day

cho x,y,z la 3 so duong thoa man x+y+z=1 cm $\frac{1-x^{2}}{x+yz}+\frac{1-y^{2}}{y+zx}+\frac{1-z^{2}}{z+xy}\geq 6$
3
phiếu
0đáp án
584 lượt xem

ap dung bdt phu

cho x,y la cac so thuc duong thoa man $0\leq x,y\leq \frac{1}{2}$ cmr $\frac{\sqrt{x} }{1+y}+\frac{\sqrt{y} }{1+x}\leq \frac{2\sqrt{2} }{3}$
6
phiếu
1đáp án
638 lượt xem

What you can do with this inequality?

Cho $x,y,z$ là các số thực dương thỏa mãn: $xy+yz+zx=3$.Chứng minh rằng: $\sum \sqrt{(x^2+3)}\ge x+y+z+3$
6
phiếu
2đáp án
1K lượt xem

bat dang thuc

cho a,b,c>0 va a+b+c=1 cm $\frac{a-bc}{a+bc}+\frac{b-ca}{b+ca}+\frac{c-ab}{c+ab}\leq \frac{3}{2}$
5
phiếu
0đáp án
283 lượt xem

Một bài nữa...

Cho $a,b,c>0$ thỏa mãn: $a^2+b^2+c^2=2(ab+bc+ca)$. Tìm GTNN của biểu thức:$P=a+b+c+\frac{1}{abc}-\frac{9}{a+b+c}$
4
phiếu
1đáp án
746 lượt xem

Tiếp tuyến không dễ dàng.

Cho $a,b,c,d>0$ thỏa mãn: $a+b+c+d=2$. Chứng minh rằng:$\frac{1}{1+3a^2}+\frac{1}{1+3b^2}+\frac{1}{1+3c^2}+\frac{1}{1+3d^2}\ge \frac{16}{7}$
12
phiếu
1đáp án
765 lượt xem

¸.·’*★Unnamed★secret.·’*★*¸.·’

For all nonnegative real numbers $a,b$ and $c,$ no two of which aer zero$.$Prove that: ...
12
phiếu
0đáp án
552 lượt xem

.·’*★Used.·’★to.·’*★.·’*

For all nonnegative real numbers $a,b$ and $c.$ Prove that: ...
2
phiếu
0đáp án
568 lượt xem

Chứng minh bđt holder

Chẳng là thằng b e có giải hộ e 1 bài :) Nhưng đến đoạn bđt holder này e k hiểu gì luôn . E chỉ biết dang phổ biến của holder là...
6
phiếu
2đáp án
1K lượt xem

DH 3

Cho $a,b,c$ không đồng thời bằng không thỏa mãn: $(a+b+c)^2=2(a^2+b^2+c^2)$. Tìm GTNN,GTLN của biểu thức: $P=\frac{a^3+b^3+c^3}{(a+b+c)(ab+bc+ca)}$.
6
phiếu
1đáp án
923 lượt xem

DH 2

Cho $a,b,c\ge 0$ thỏa mãn: $ab+bc+ca=1$. Chứng minh rằng:$\frac{2a}{a^2+1}+\frac{2b}{b^2+1}+\frac{c^2-1}{c^2+1}\le \frac{3}{2}$
8
phiếu
1đáp án
1K lượt xem

Tìm GTNN của $P=\frac{b+2c}{1+a}+\frac{a+2c}{1+b}+6\ln(a+b+2c)$

Cho các số thực dương $a,b,c$ thỏa mãn: $ab\ge 1$ và $c(a+b+c)\ge 3$. Tìm GTNN của $P=\frac{b+2c}{1+a}+\frac{a+2c}{1+b}+6\ln(a+b+2c)$
7
phiếu
1đáp án
762 lượt xem

BĐT Tổng quát(3)

Cho $n$ số thực dương thỏa mãn điều kiện $a_{1}+a_{2}+...+a_{n}\geq \frac{1}{a_{1}}+\frac{1}{a_{2}}+...+\frac{1}{a_{n}}$CMR:$2(a_{1}+a_{2}+...+a_{n})\geq \sqrt{a_{1}^{2}+3}+\sqrt{a_{2}^{2}+3}+...+\sqrt{a_{n}^{2}+3}$
7
phiếu
1đáp án
655 lượt xem

Bất đẳng thức nhẹ nhàng

Cho $a,b,c$ là các số thực dương. Chứng minh rằng: $\sum \frac{a+b}{c+\sqrt[3]{4(a^3+b^3)}}\ge 1$
10
phiếu
0đáp án
407 lượt xem

(19)

Cho $a,b,c \ge 0$ và $a+b+c=3$Chứng minh $(a^2+2)(b^2+2)(c^2+5) \ge \frac{729}{16}$
7
phiếu
1đáp án
1K lượt xem

câu này cũ mak ms nek mn :))

cho $a,b,c>0$. C/m: $\frac{8}{81}(a^{3}+b^{3}+c^{3})\left[\left(\frac{1}{a}+\frac{1}{b+c}\right)^{3}+\left(\frac{1}{b}+\frac{1}{c+a}\right)^{3}+\left(\frac{1}{c}+\frac{1}{a+b}\right)^{3}\right]\geq3$
2
phiếu
1đáp án
1K lượt xem

......HAY DONG NAO VA ..............LY TUONG SE SOI SANG BAN

cho a,b,c là các số thực dương có ab+bc+ac=1 cm $\frac{a}{\sqrt{a^{2}+1} }+\frac{b}{\sqrt{b^{2}+1} }+\frac{c}{\sqrt{c^{2}+1} }\leq \frac{3}{2}$
4
phiếu
1đáp án
967 lượt xem

Bất đẳng thức

Cho a, b,c, >0. CMR:$P= \frac{1}{a(b+1)}+\frac{1}{b(c+1)}+\frac{1}{c(a+1)} \geq \frac{3}{\sqrt[3]{abc}(\sqrt[3]{abc}+1)}$
10
phiếu
1đáp án
938 lượt xem

(18)

Cho $a,b,c \ge 0$ và $a+b+c=3$. Chứng minh :$a(a+b)^2+b(b+c)^2+c(c+a)^2 \ge 12$

Trang trước1...56789...74Trang sau 153050mỗi trang
Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003