12
phiếu
1đáp án
898 lượt xem

Max dễ...

Cho $a,b \epsilon (0;1)$ & $(a^{3}+b^{3})(a+b)=ab(1-a)(1-b)$Tìm max P=$\frac{1}{\sqrt{1+a^{2}}}+\frac{1}{\sqrt{1+b^{2}}}+3ab - a^{2} - b^{2}$
18
phiếu
0đáp án
1K lượt xem

khá hay...cũng khá cơ bản....!?

cho $a,b,c,d,e \in R^{+}$và thỏa mãn $a^{5n}.b^{4n}.c^{3n}.d^{2n}.e^{n}\geq 1$ (với $ n\in N^{*}$)Tìm min của:...
16
phiếu
0đáp án
1K lượt xem

đừng sợ =)))

Cho $8$ số dương $a, b, c, d, x, y, z, t$ thỏa mãn $ax+by+cz+dt=xyzt$. Chứng minh :$x+y+z+t>\frac{4}{3}(\sqrt[]{1+3\sqrt{a+b}+3\sqrt{a+c}+3\sqrt{b+c}+3\sqrt{b+d}+3\sqrt{c+d}}-1)$
6
phiếu
1đáp án
951 lượt xem

bất đẳng thức này được suy ra từ một bất đẳng thức cơ bản

Cho $2008a, 2009b, 2010c$ là các số thực thỏa mãn phương trình $mx^{3}+nx+p=0$ $(m\neq 0)$ (giả sử như phương trình này có $3$ nghiệm). Chứng...
15
phiếu
1đáp án
1K lượt xem

Mong mấy sư phụ chỉ giáo cho em

Cho $a, b, c$ là các số thực dương thỏa mãn $abc \geq 1$.Cmr: $\frac{a^{5}-a^{2}}{a^{5}+b^{2}+c^{2}}+\frac{b^{5}-b^{2}}{b^{5}+c^{2}+a^{2}}+\frac{c^{5}-c^{2}}{c^{5}+a^{2}+b^{2}} \geq 0$
9
phiếu
2đáp án
993 lượt xem

Help!!!!

Cho 3 số thực dương thay đổi $a,b,c$ thỏa mãn $a^{2}+b^{2}+c^{2} \geq (a+b+c)\sqrt{ab+bc+ca}$Tìm min P=$a(a-2b+2) + b(b-2c+2) + c(c-2a+2) + \frac{1}{abc}$
13
phiếu
0đáp án
823 lượt xem

phát triển từ bài toán cơ bản đây....!?

chứng minh bđt lượng giác sau:.......$(m_{a}+m_{b}+m_{c})(m_{a}.m_{b}+m_{b}.m_{c}+m_{c}.m_{a})\geq 9.l_{a}l_{b}l_{c}$(nếu thấy hay thì vote giùm nha....!?)
5
phiếu
2đáp án
1K lượt xem

hộ cái

$x^{2}+2y^{2}+3z^{2}=1$CMR : $x+y+z \leq \sqrt{\frac{11}{6}}$
4
phiếu
1đáp án
638 lượt xem

ngu bất ngu nghiệm nguyên y như tk trường, help me

Cho $a, b, c>0$ thỏa mãn $a+b+c=4$. Chứng minh :$(a+b)(b+c)(c+a)\geq a^{3}b^{3}c^{3}$Cho $a,b,c>0$ thỏa mãn $a^{2}+b^{2}+c^{2}= 4$. CMR :$a+b+c+ab+bc+ca \leq 1+ \sqrt{3}$
7
phiếu
1đáp án
719 lượt xem

bài này khó quá,chỉ em với...

Cho $a, b, c$ là các số dương thỏa mãn $a+b+c=1$. CM : $\frac{3}{ab+bc+ca}+\frac{1}{a^{2}+b^{2}+c^{2}}\geq12$
16
phiếu
3đáp án
3K lượt xem

BĐT

Cho các số thực dương $a,b,c$ thỏa mãn$a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$Chứng minh rằng...
6
phiếu
1đáp án
522 lượt xem
4
phiếu
0đáp án
443 lượt xem

trao đổi để tiến lên! làm hộ mình nha mọi người

giải hệ phương trình $y^{2}+(4x-1)^{2}=\sqrt[3]{4x(8x+1)} \\ y\sqrt{14x-1}=4x+1 $
7
phiếu
2đáp án
1K lượt xem

Bất đẳng thức

Cho $a,b,c>0$ . CMR : $\frac{1}{a^{3}+b^{3}+abc}+\frac{1}{b^{3}+c^{3}+abc}+\frac{1}{c^{3}+a^{3}+abc} \leq \frac{1}{abc}$
8
phiếu
1đáp án
694 lượt xem

BĐT độc và lạ...

Cho $a,b,c$ là các số dương thỏa mãn $abc=1$.C/m:$\frac{1}{2a+1}$+$\frac{1}{2b+1}$+$\frac{1}{2c+1}$$\geq$1
7
phiếu
1đáp án
746 lượt xem

Ai tốt bụng cứu em với!

Cho $a, b, c$ là các số dương thỏa mãn : $ab+bc+ca+abc=4$. CMR : $\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\leq3$
14
phiếu
1đáp án
1K lượt xem

BĐT!!!

Cho các số thực dương $x,y,z$ thỏa mãn $x^{2}+y^{2}+z^{2}=1$.Tìm GTLN:$P=(1+9xyz-x-y-z)(\frac{1}{1-xy}+\frac{1}{1-yz}+\frac{1}{1-zx})$
15
phiếu
1đáp án
887 lượt xem

từng là đề thi vào 10........

Cho $2015$ số nguyên dương $a_{1},a_{2},a_{3},...,a_{2015}$ thỏa...
16
phiếu
1đáp án
934 lượt xem

bất đẳng thức...........

Cho $a,b,c >0$ .CMR:$\frac{a^{3}}{a^{2}+ab+b^{2}}+\frac{b^{3}}{b^{2}+bc+c^{2}}+\frac{c^{3}}{c^{2}+ca+a^{2}}\geq \frac{a+b+c}{2}$
19
phiếu
2đáp án
2K lượt xem

ai là người tìm ra cách giải cuối cùng cho bài toán này ?!?

cho$ a,b,c \in R^{+}$...tìm min của :$A=\frac{a}{\sqrt{a^{2}+bc}}+\frac{b}{\sqrt{b^{2}+ca}}+\frac{c}{\sqrt{c^{2}+ab}}$(mới tìm được 3 cách.!?)
10
phiếu
2đáp án
1K lượt xem

Cho a,b,c dương thỏa mãn $a+b+c=3$. CMR: $\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\geq a^2+b^2+c^2$

Cho a,b,c dương thỏa mãn $a+b+c=3$.CMR: $\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\geq a^2+b^2+c^2$
6
phiếu
1đáp án
755 lượt xem

lam giup bai nay voi

cho so thuc duong x,y,z thoa man $x+y+z\leq1$:cmr :$\sqrt{x^2+\frac{1}{x}}+\sqrt{y^2+\frac{1}{y}}+\sqrt{z^2+\frac{1}{z}}$$\geq \sqrt{82}$
14
phiếu
1đáp án
945 lượt xem

cái này chắc rất cũ rồi nhưng vẫn hay....

$a,b,c,d\in R^{+}$ và thỏa mãn $abcd=1$.CMR:$\frac{1}{2(a+b-1)+c+d}+\frac{1}{2(b+c-1)+d+a}+\frac{1}{2(c+d-1)+a+b}+\frac{1}{2(d+a-1)+b+c}\leq 1$
27
phiếu
1đáp án
2K lượt xem

bài này đã từng thi rồi..!?..mọi người tìm xem có cách giải nào đơn giản dễ hiểu hơn không !?

$cho: x,y,z$ đều không âm và $x+y+z =\frac{3}{2}$ tìm min của:A=$\frac{\sqrt{x^{2}+xy+y^{2}}}{4yz+1}+\frac{\sqrt{y^{2}+yz+z^{2}}}{4zx+1}+\frac{\sqrt{z^{2}+zx+x^{2}}}{4xy+1}$
1
phiếu
0đáp án
369 lượt xem

help me

Giải bất phương trình: (4x2" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; font-size: 12px; word-wrap:...
12
phiếu
1đáp án
978 lượt xem

bất đẳng thức. kĩ thuật dùng BĐT côsi

$cho : a,b,c\geq 0 . và : a+b+c=3 ....CMR:$$\sqrt{a}+\sqrt{b}+\sqrt{c}\geq ab+bc+ca$
8
phiếu
2đáp án
5K lượt xem

$sinA+sinB+sinC\leq \frac{3\sqrt{3}}{2}$

$sinA+sinB+sinC\leq \frac{3\sqrt{3}}{2}$mình cần nhiều cách giải
1
phiếu
0đáp án
287 lượt xem
10
phiếu
1đáp án
905 lượt xem

Câu cuối đề thi thử THPT QG Bắc Giang 2016 < NEWW>

Cho ba số thực dương $x,y,z$ thỏa mãn : $xy+yz+zx+xyz=4$ . CMR : $3(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}})^{2} \geq (x+2)(y+2)(z+2)$
8
phiếu
1đáp án
853 lượt xem

hay

Cho các số nguyên dương $x,y,z$ nguyên dương thỏa mãn $x+y=z-1$.Tìm giá trị nhỏ nhất của biểu thức:$A= \frac{x^3}{x+yz} + \frac{y^3}{y+xz} + \frac{z^3}{z+xy} + \frac{14}{(z+1)\sqrt{(x+1)(y+1)}}$

Trang trước1...1920212223...74Trang sau 153050mỗi trang
Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003