10
phiếu
1đáp án
896 lượt xem

Mathematics abolishes oblivion and ignorance which are ours by birth

Cho các số thực dương $a,b,c$ sao cho $\sqrt{a}+\sqrt{b}+\sqrt{c}=3$. Chứng minh: $8(a^2+b^2+c^2)\geq 3(a+b)(b+c)(c+a)$
28
phiếu
1đáp án
2K lượt xem

Mathematics brings to light our intrinsic ideas

Cho các số thực dương a, b, c. Chứng minh rằng: $\frac{a}{\sqrt{a+b}}+\frac{b}{\sqrt{b+c}}+\frac{c}{\sqrt{c+a}}\leq \frac{5}{4}\sqrt{a+b+c}$
4
phiếu
0đáp án
577 lượt xem

cơ bản nhưng không đơn giản

tìm các góc của tam giác $ABC$ biết:$\cos A+2(\cos B+\cos C-\sqrt{2})=0$
13
phiếu
4đáp án
4K lượt xem

Cho $\begin{cases}a, b, c>0 \\ a+b+c=1 \end{cases}$

Tìm GTLN $T=\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{c+a}-\frac{1}{a}-\frac{1}{b}-\frac{1}{c}$
8
phiếu
5đáp án
2K lượt xem

giúp tớ với....

cho a,b.c là các số thực dương.cmr:$\frac {a^{2}}{2a^{2}+bc}$+ $\frac {b^{2}}{2b^{2}+ca}$+$\frac {c^{2}}{2c^{2}+ab}\leq 1$
14
phiếu
0đáp án
903 lượt xem

GTLN......

Cho các số thực $a,b,c$ thỏa mãn $(a^{2}+4b^{2})(b^{2}+4c^{2})(c^{2}+4a^{2})=8$Tìm max:$P=(a-2b)(b-2c)(c-2a)+14abc$
8
phiếu
2đáp án
1K lượt xem

Tìm số thực m lớn nhất sao cho tồn tại các số thực không âm x,y,z thỏa mãn: \begin{cases}x+y+z=4 \\ x^3+y^3+z^3+8(xy^2+yz^2+zx^2)=m \end{cases}

Tìm số thực m lớn nhất sao cho tồn tại các số thực không âm x,y,z thỏa mãn:\begin{cases}x+y+z=4 \\ x^3+y^3+z^3+8(xy^2+yz^2+zx^2)=m \end{cases}
15
phiếu
1đáp án
2K lượt xem
12
phiếu
1đáp án
1K lượt xem

hệ tổng quát....mọi người giải theo cách tổng quát nha....!?

$\begin{cases}(4-y)\sqrt{\frac{3}{2}x-\frac{1}{2}y-2}+\sqrt{7-x-y}=\sqrt{85-57y+13y^{2}-xy^{2}} \\ \sqrt{ax^{2}+bxy+cy^{2}}+\sqrt{ay^{2}+bxy+cx^{2}}=\sqrt{a+b+c}(x+y) \end{cases}$với...
12
phiếu
0đáp án
549 lượt xem

BĐT nha moi người!!!

cho 2 số $x,y$ thỏa mãn $x^{2}+y^{2}=1$. tìm $Max$P=$\sqrt{(5+4y-4x^{2})(1-y)} (\sqrt{2-2y}+\sqrt{2-x\sqrt{3}+y}+\sqrt{2+x\sqrt{3}+y})$
16
phiếu
1đáp án
1K lượt xem

(Làm+Vote) nhiều!!!!!!!!!!!!!!!

CMR:$a\sqrt{b^{2}+4c^{2}}+b\sqrt{c^{2}+4a^{2}}+c\sqrt{a^{2}+4b^{2}}\leq \frac{3}{4}(a+b+c)^{2}$
3
phiếu
2đáp án
1K lượt xem
3
phiếu
1đáp án
1K lượt xem

Bat dang thuc

cm: $\frac{x^{3}}{x^{2}+xy+y^{2}} \geq \frac{2x-y}{3}$voi moi so thuc duong x,y
8
phiếu
0đáp án
484 lượt xem

BĐT max hay....

Cho các số thực dương $a,b,c$ thỏa mãn $a^{3}+b^{4} + c^{5}\geq a^{4}+b^{5}+c^{6}$Tìm GTLN:$P=\frac{ab(a^{2}+b^{2})}{3+c^{4}} + \frac{bc(b^{2}+c^{2})}{3+a^{4}} - \frac{1}{8}. \frac{b^{4}(c^{4}+a^{4})}{a^{4}c^{4}}$
11
phiếu
2đáp án
1K lượt xem

bài cơ bản nhất của qui nạp toán học nè..!?

chứng minh rằng:$\frac{a^{n}+b^{n}}{2}\geq \frac{(a+b)^{n}}{2^{n}}$ (với mọi $n\in N^{*}$)(có ai quan tâm đến phương pháp chứng minh BĐT này...
11
phiếu
1đáp án
1K lượt xem

thời gian cho lượng giác......!?

tam giác ABC sẽ có đặc điểm gì nếu....:$\frac{\sqrt[2016]{\sin A }+\sqrt[2016]{\sin B}+\sqrt[2016]{\sin C}}{\sqrt[2016]{\cos \frac{A}{2}}+\sqrt[2016]{\cos \frac{B}{2}}+\sqrt[2016]{\cos \frac{C}{2}}}=1$......................................................................
13
phiếu
4đáp án
2K lượt xem

Ai giỏi BĐT nào ...^-^

Cho $x, y, z$ là các số thực dương thỏa mãn $x(x+y+z)= 3yz$.Cmr :$(x+y)^{3}+(x+z)^{3}+3(x+y)(y+z)(z+x) \leq 5(y+z)^{3}$
5
phiếu
1đáp án
527 lượt xem

trùm hệ thức lượng ơi cho tôi yết kiến.

CMR:$\tan ^{6}A+\tan ^{6}B+\tan ^{6}C\geq 81$đa tạ...
8
phiếu
0đáp án
469 lượt xem

Một bài toán hay...

Cho $\Delta ABC$ cố định và 1 điểm M thay đổi trong không gian nhưng không thuộc các đường thẳng $AB ;BC; AC$.Kí hiệu $x,y,z$ lần lượt là khoảng...
15
phiếu
2đáp án
1K lượt xem

BĐT bậc ...."khủng"!!!

CM: Với $0\leq$$a$$\leq$$b$$\leq$$c$ thì $\frac{a^{2005}+b^{2005}+c^{2005}}{a^{2006}+b^{2006}+c^{2006}}$$\leq $$\frac{3}{a+b+c}$
12
phiếu
0đáp án
703 lượt xem

[ không tiêu đề... ]

giả sử phương trình bậc ba sau có ba nghiệm là $a,b,c$ $x^{3}-3x^{2}+mx+n=0$ (với $m >0,n<0$)Tìm min của biểu thức: ...
4
phiếu
0đáp án
229 lượt xem

BĐT

$a;b;c>0; a^{2}+b^{2}+c^{2}+abc=4$CMR: $a+b+c+\frac{1}{4}\min [(a-b)^{2}+(b-c)^{2}+(c-a)^{2}]\leq 3$
11
phiếu
4đáp án
2K lượt xem

Giờ chuyển sang đặt câu hỏi thôi....mấy bài kia toàn bài lớp 10, 11 sorry nhưng mình ko bik làm!!!

Chứng minh rằng: $\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\geq \frac{x}{y}+\frac{y}{z}+\frac{z}{x}$Với MỌI SỐ THỰC $x; y; z \neq 0$ ( Bài...
14
phiếu
1đáp án
1K lượt xem

BĐT Ngắn Gọn

Giờ chắc rửa tay gác kiếm đăng bài chứ không giải bài nữa $:($ cho $x,y,z$ là các số thực thỏa mãn điều kiện $x^2+y^2+z^2=2$chứng minh rằng $x+y+z\leq 2+xyz$
10
phiếu
0đáp án
514 lượt xem

BĐT

cho $x,y,z\geq0$ thỏa mãn $(x+y-1)^{2}+(y+z-1)^{2}+(z+x-1)^{2}=27$ Tìm $Min,Max$ $x^{4}+y^{4}+z^{4}$
19
phiếu
1đáp án
1K lượt xem
12
phiếu
1đáp án
1K lượt xem

Come back :)

Lâu lắm mới đăng bài đây, vừa làm hồi chiều, thấy hay hay đăng lênCho $a;b;c$ không âm có tổng bằng 4Tìm max $P=a^3+b^3+c^3+8(a^2b+b^2c+c^2a)$
16
phiếu
1đáp án
976 lượt xem

đã từng thi rồi nè....kĩ thuật sử dụng bất đẳng thức...chọn điểm rơi...!?

Cho $a, b, c$ là các số thực dương thỏa mãn $a^{2}+b^{2}+c^{2}=5(a+b+c)-2ab$tìm min...
15
phiếu
0đáp án
869 lượt xem

từ một bất đẳng thức đơn giản khác....!?

cho $x,y,z,a,b,c$$\in R^{+}$.tìm min của:$A=\frac{\sqrt{by}}{\sqrt{by+8cz}}+\frac{\sqrt{cz}}{\sqrt{cz+8ax}}+\frac{\sqrt{ax}}{\sqrt{ax+8by}}$(thấy...
10
phiếu
1đáp án
1K lượt xem

BĐT

$(ay+az+bz+bx+cx+cy)^{2}\geq 4(ab+bc+ca)(xy+yz+xz)$ với $\forall a;b;c;x;y;z$(càng nhiều cách càng tốt nha)

Trang trước1...1819202122...74Trang sau 153050mỗi trang
Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003