8
phiếu
2đáp án
759 lượt xem

(10)

Cho các số thực không âm $a,b$ thỏa mãn $a+b=2$, chứng minh :$$\frac{a^2}{(a+1)^2+5b}+\frac{b^2}{(b+1)^2+5a} \overset{(1)}{\ge} \frac 29 \overset{(2)}{\ge} \frac{a^2}{2(a+1)^2+b}+\frac{b^2}{2(b+1)^2+a}$$
3
phiếu
0đáp án
252 lượt xem

bdt

$\frac{1}{\sqrt{x^2+1}}+\frac{1}{\sqrt{y^2+1}}\leq \frac{2}{\sqrt{xy+1}}$
1
phiếu
1đáp án
790 lượt xem

help

$(a+b)(b+c)(c+a)\geq \frac{8}{9}(a+b+c)(ab+bc+ca)$
8
phiếu
1đáp án
1K lượt xem

mik mem mới mong mn giúp đỡ

Cho a,b,c là các số thực dương .CMR:$\frac{a+b+c}{3}\leq \frac{1}{4}\sqrt[3]{\frac{(a+b)^{2}(b+c)^{2}(c+a)^{2}}{abc}}$
1
phiếu
1đáp án
611 lượt xem

bđt

Tìm GTNN$M=\frac{x_{1}^{2}+x_{2}^{2}+...+x_{2015}^{2}}{x_{1}(x_{2}+x_{3}+...+x_{2015})}$ với $x_{1},x_{2},...,x_{2015}>0$
3
phiếu
1đáp án
788 lượt xem

help me

Cho $x;y;z\in R $ thỏa mãn $8^{x}+8^{y}+8^z=3$CMR $\frac{4^x}{3-4^{x}}+\frac{4^y}{3-4^y}+\frac{4^z}{3-4^z}\geq \frac{3}{2}$
10
phiếu
0đáp án
585 lượt xem

Show that: $\frac{(a^2+bc)(b^2+ca)(c^2+ab)}{(a^2+b^2)(b^2+c^2)(c^2+a^2)}+\frac{(a-b)(a-c)}{b^2+c^2}+\frac{(b-a)(b-c)}{c^2+a^2}+\frac{(c-a)(c-b)}{a^2+b^2}\geq 1$

For positive $a,b,c.$ Show that: $\frac{(a^2+bc)(b^2+ca)(c^2+ab)}{(a^2+b^2)(b^2+c^2)(c^2+a^2)}+\frac{(a-b)(a-c)}{b^2+c^2}+\frac{(b-a)(b-c)}{c^2+a^2}+\frac{(c-a)(c-b)}{a^2+b^2}\geq 1$
13
phiếu
1đáp án
1K lượt xem

Prove that: $1+\frac{ab+bc+ca}{a^2+b^2+c^2}\geq \frac{16abc}{(a+b)(b+c)(c+a)}$

For positive real numbers $a,b,c.$ Prove that: $1+\frac{ab+bc+ca}{a^2+b^2+c^2}\geq \frac{16abc}{(a+b)(b+c)(c+a)}$
13
phiếu
1đáp án
1K lượt xem

Tìm min: $P=\frac{x+1}{y+z-1}+\frac{y+1}{z+x-1}+(\frac{x+y}{z})^2$

Cho $\left\{ \begin{array}{l} x,y,z\geq 1\\ x^2+y^2+z^2=6xy+2(x+y+z) \end{array} \right..$Tìm min: $P=\frac{x+1}{y+z-1}+\frac{y+1}{z+x-1}+(\frac{x+y}{z})^2$
5
phiếu
1đáp án
784 lượt xem

BĐT!

Cho a, b, c >0 thỏa mãn $a^{2}+b^{2}+c^{2}=3$Tìm min S= $\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}$
16
phiếu
1đáp án
987 lượt xem

Vui chút:))

Cho $a,b,c$ là các số thực thỏa mãn $abc=1$.CMR:$\frac{\sqrt{5}-3}{3}.\frac{1}{(a^{2}-a+1)(b^{2}-b+1)}+\frac{1}{c^{2}-c+1}\geq \frac{1-\sqrt{5}}{3}$
4
phiếu
1đáp án
686 lượt xem

BĐT hay+khó!

Cho x, y, z là độ dài 3 cạnh tam giác có chu vi bằng 2p thỏa mãn: 15yz + 10zx + 1964xy= 2023xyzTìm GTNN: $K=\frac{1974}{p-x}+\frac{1979}{p-y}+\frac{25}{p-z}$
9
phiếu
2đáp án
1K lượt xem
10
phiếu
1đáp án
749 lượt xem

Mỗi ngày 1 chút. Chơi mà học ,học mà chơi

cho $a,b,c$ là các số thực dương thay đổi tm$(a+c)(\frac{1}{a^{2}}+\frac{1}{b^{2}})=\frac{10}{b},c\geq 4b$tìm $GTLN,GTNN$ của P=$\frac{a+c-b}{b}$
4
phiếu
2đáp án
1K lượt xem

giup

cho 3 số dương a,b,c có tích bằng 1, cmr a) (a-1)/b+(b-1)/c+(c-1)/a >=0b) 1+3/(a+b+c) >= 6/(ab+bc+ca)
7
phiếu
1đáp án
747 lượt xem

Cho $x,y$ là các số thực thỏa mãn: $(3x+7y+1)^2+(x+4y+1)^2\le 9$.Chứng minh rằng: $\frac{-14}{5}\le x+y\le \frac{16}{5}$

Cho $x,y$ là các số thực thỏa mãn: $(3x+7y+1)^2+(x+4y+1)^2\le 9$.Chứng minh rằng:$\frac{-14}{5}\le x+y\le \frac{16}{5}$
7
phiếu
0đáp án
453 lượt xem

Mỗi ngày tôi chọn một niềm vui............

Given $a,b,c\geq 0$ satisfy $a+b+c=6.$ Prove that: $(11+a^2)(11+b^2)(11+c^2)+120abc\geq 4320$Equality occurs when $(a;b;c)=(1;2;3)./$
14
phiếu
1đáp án
840 lượt xem

Come back:D

Cho các số thực dương $a,b,c$ thỏa mãn $(a+b)^{2}+2c^{2}\geq 2$Tìm min $P=5(a^{2}+b^{2}+c^{2})-(a+b+\sqrt{2}c)^{2}-\sqrt{\frac{(a+b)^{2}}{2}+c^{2}}$
4
phiếu
0đáp án
443 lượt xem

Bất đẳng thức hay!

Cho $x,y,z>0$ thoả mãn $xy+yz+zx=1$Tìm min K =$\frac{3x^{2}y^{2}+1}{z^{2}+1}+\frac{3y^{2}z^{2}+1}{x^{2}+1}+\frac{3z^{2}x^{2}+1}{y^{2}+1}$
6
phiếu
1đáp án
850 lượt xem

Cho $a,b,c>0$. Chứng minh rằng: $\sum \frac{a}{b+c}\le \frac{1}{2}+\frac{a^2+b^2+c^2}{ab+bc+ca}$

Cho $a,b,c>0$. Chứng minh rằng: $\sum \frac{a}{b+c}\le \frac{1}{2}+\frac{a^2+b^2+c^2}{ab+bc+ca}$
9
phiếu
1đáp án
931 lượt xem

Bất Đẳng Thức hay

Cho $1\leq x,y,z \leq 2$Tìm min P= $ \frac{(x+y)^2}{2(x+y+z)^2-2(x^2+y^2)-z^2} $
14
phiếu
1đáp án
1K lượt xem

Present for Vy (not for some Gods)

1.Cho các số thực a,b,c thỏa mãn $a+b+c=0$.Cm:$ab+2bc+3ca\leq 0$.2.Cho 4 số dương a,b,c,d .Cm:$\sqrt{ab}+\sqrt{cd}\leq \sqrt{(a+d)(b+c)}$ .3.Cho...
15
phiếu
1đáp án
1K lượt xem

Tiếp nha!!!

Cho $x,y,z>0$ và $x^{2}+y^{2}+z^{2}=2$ Tìm $Max$M=$\frac{x^{2}}{x^{2}+yz+x+1}+\frac{y+z}{x+y+z+1}+\frac{1}{xyz+3}$
8
phiếu
1đáp án
1K lượt xem

nhờ mn thông não giúp ^.^

Cho 3 số thực $x,y,z$ đôi một khác nhau thuộc đoạn $[-1;1]$. tìm GTNN của biểu thức $Q=\frac{4}{(x-y)^2} + \frac{4}{(y-z)^2}+ \frac{4}{(z-x)^2}$
4
phiếu
4đáp án
6K lượt xem

Bài 7: CMR: a = b = c nếu có 1 trong các điều kiện sau:1/ a2 + b2 + c2 = ab + bc + ca.2/ (a + b + c)2 = 3(a2 + b2 + c2)3/ (a + b + c)2 = 3 (ab + bc + ca).

Chứng minh rằng $a=b=c$ nếu có 1 trong các điều kiện sau1.$a^2+b^2+c^2=ab+bc+ca$2.$(a+b+c)^2=3(a^2+b^2+c^2)$3.$(a+b+c)^2=3(ab+bc+ca)$
8
phiếu
1đáp án
1K lượt xem

Toán 9, mọi người giúp mình với!

Cho x,y,z >0Chứng minh: $\frac{xy}{x^{2}+yz+zx}+\frac{yz}{y^{2}+zx+xy}+\frac{zx}{z^{2}+xy+yz}\leq \frac{x^{2}+y^{2}+z^{2}}{xy+yz+zx}$
12
phiếu
2đáp án
1K lượt xem

bất đẳng thức 4

Cho a,b,,c là các số thực dương thoả mãn $a^{2}+b^{2}+c^{2}=1$. Chứng minh : $\frac{a^{2}+ab+1}{\sqrt{a^{2}+3ab+c^{2}}}+\frac{b^{2}+bc +1}{\sqrt{b^{2}+3bc+a^{2}}}+\frac{c^{2}+ca+1}{\sqrt{c^{2}+3ca+b^{2}}}\geq \sqrt{5}(a+b+c)$
8
phiếu
1đáp án
581 lượt xem

bất đẳng thức 3

Cho x,y,z là các số thực dương . Chứng minh rằng : $\frac{2x^{2}+xy}{(y+\sqrt{xz}+z)^{2}}+\frac{2y^{2}+yz}{(z+\sqrt{xy}+x)^{2}}+\frac{2z^{2}+zx}{(x+\sqrt{yz}+y)^{2}}\geq 1$
11
phiếu
2đáp án
1K lượt xem

bất đẳng thức 2

Cho x,y,z là các số dương thoả mãn xyz=1.Tìm GTNN của biểu thức : $P=\frac{x^{2}(y+z)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^{2}(z+x)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^{2}(x+y)}{x\sqrt{x}+2y\sqrt{y}}$
11
phiếu
1đáp án
1K lượt xem

bất đẳng thức 1

Cho x,y,z là các số thực dương . Tìm GTNN của biểu thức : $P= \frac{x^{2}}{z(z^{2}+x^{2})}+\frac{y^{2}}{x(x^{2}+y^{2})}+\frac{z^{2}}{y(y^{2}+z^{2})}+2(x^{2}+y^{2}+x^{2})$

Trang trước1...1011121314...74Trang sau 153050mỗi trang
Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003