|
|
Giải bất phương trình : $\frac{{{4^x} + 2x - 4}}{{x - 1}} \le 2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)$
|
Giải các bất phương trình : $\begin{array}{l} 1)\,\,\sqrt {2.\left( {{5^x} + 24} \right)} - \sqrt {\left( {{5^x} - 7} \right)} \ge \sqrt {\left( {{5^x} + 7} \right)} \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\\ 2)\,\,\sqrt {{{13}^x} - 5} \le \sqrt {2\left( {{{13}^x} + 12} \right)} - \sqrt {{{13}^x} + 5} \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2) \end{array}$
|
|
Giải bất phương trình : $\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{6^{\log _6^2x}} + {x^{{{\log }_6}x}} \le 12\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)$
|
|
|
|
|
|
|
|
|
|