|
TXĐ: R. Đặt thừa số, ta có: $\begin{array}{l} {x^2}\left( {{2^{{x^2}}} - 4} \right) - 2x\left( {{2^{{x^2}}} - 4} \right) - 3\left( {{2^{{x^2}}} - 4} \right) < 0\\ \Leftrightarrow \left( {{2^{{x^2}}} - 4} \right)\left( {{x^2} - 2x - 3} \right) < 0 \end{array}$ $\Leftrightarrow \left\{ \begin{array}{l} \left( {{x^2} - 2x - 3} \right) > 0\\ \left( {{2^{{x^2}}} - 4} \right) < 0 \end{array} \right.$ $(1)$ hoặc $ \left\{ \begin{array}{l} \left( {{x^2} - 2x - 3} \right) < 0\\ \left( {{2^{{x^2}}} - 4} \right) > 0 \end{array} \right.$ $(2)$
$\begin{array}{l} (1) \Leftrightarrow \left\{ \begin{array}{l} - 1 < x < 3\\ {2^{{x^2}}} > 2 \end{array} \right.\,\,\,\, \Leftrightarrow \left\{ \begin{array}{l} - 1 < x < 3\\ x < - \sqrt 2 \,\,\,\,\,\, \vee \,\,\,\,\,x > \sqrt 2 \end{array} \right.\\ \,\,\,\,\,\,\,\,\, \Leftrightarrow \sqrt 2 < x < 3 \end{array}$
$\begin{array}{l} (2) \Leftrightarrow \left\{ \begin{array}{l} x < - 1\,\,\,\,\,\, \vee \,\,\,\,\,\,\,\,x > 3\\ {2^{{x^2}}} < 2 \end{array} \right.\,\,\,\, \Leftrightarrow \left\{ \begin{array}{l} x < - 1\,\,\,\,\,\, \vee \,\,\,\,\,\,\,\,x > 3\\ - \sqrt 2 < x < \sqrt 2 \,\,\,\,\,\,\,\,\, \end{array} \right.\\ \,\,\,\,\,\,\,\,\,\, \Leftrightarrow - \sqrt 2 < x < - 1 \end{array}$
Vậy BPT đã cho có nghiệm $\left[\begin{array}{l}\sqrt 2 < x < 3\\- \sqrt 2 < x < - 1\end{array} \right.$
|