Giải các hệ phương trình sau:
a/ $ \begin{cases}x^{2}=1+6\log_{4}{y} \\ y^{2}=y.2^{x}+2^{2x+1} \end{cases} $
b/ $ \begin{cases}  \log_{5}{x}+\log_{5}{7}\log_{7}{y}=1+\log_{5}{2}  \\ 3+2\log_{2}{y}=\log_{2}{5} \left(  2+3\log_{5}{x}  \right)     \end{cases}  $
c/ $\begin{cases}  \log_{9}{ \left( x^{2}+1    \right) }-\log_{3}{ \left( y-2   \right)}=0  \\  \log_{2}{ \left( x^{2}-2y^{2}+10y-7    \right) } =2  \end{cases} $
d/ $\begin{cases}  4^{\frac{x}{y}+\frac{y}{x}}=32  \\ \log_{3}{\left( x+y   \right) } =1-\log_{3}{\left(  x+y  \right) }   \end{cases} $
a/ $ \begin{cases}x^{2}=1+6\log_{4}{y} (1)\\ y^{2}=y.2^{x}+2^{2x+1} (2)\end{cases} $
Điều kiên:$y>0$
$(2) \Leftrightarrow 2 \left(  2^{x}  \right) ^{2}+y.2^{x}-y^{2}=0$ Coi y là tham số, phương trình có $ \Delta = y^{2}+8y^{2}=9y^{2}$
$\Rightarrow \left[ \begin{array}{l}  2^{x}=\frac{-y-3y}{4}=-y (L)\\ 2^{x}=\frac{-y+3y}{4}=\frac{y}{2}   \end{array} \right. $
từ $y=2.2^{x} $ thế vào $(1)$:
$x^{2}=1+6\log_{4}{y} \Leftrightarrow x^{2}=1+3\log_{2}{ \left(  2.2^{x}  \right) }=1+3 \left( \log_{2}{2}+\log_{2}{2^{x}}   \right) $
$\Leftrightarrow x^{2}=1+3 \left(   1+x \right) \Leftrightarrow x^{2}-3x-4 \Leftrightarrow \left[ \begin{array}{l} x=-1 \Rightarrow y=1  \\  x=4 \Rightarrow y=32  \end{array} \right.  $
b/ $ \begin{cases}  \log_{5}{x}+\log_{5}{7}\log_{7}{y}=1+\log_{5}{2}  \\ 3+2\log_{2}{y}=\log_{2}{5} \left(  2+3\log_{5}{x}  \right)     \end{cases}  $
Điều kiện:$x>0, y>0$
$(1) \Leftrightarrow \log_{5}{x}+\log_{5}{y}=\log_{5}{10} \Leftrightarrow xy=10 \Leftrightarrow y=\frac{10}{x}$
$(2) \Leftrightarrow 3+2\log_{2}{\frac{10}{x}}-2\log_{2}{5}+3\log_{2}{5}\log_{5}{x}$
$\Leftrightarrow 3+2\log_{2}{10}-2\log_{2}{5}+3\log_{2}{x}$
$\Leftrightarrow 3+2\log_{2}{5}+2=2\log_{2}{5}+5\log_{2}{x}$
$\Leftrightarrow 5\log_{2}{x}=5 \Leftrightarrow \log_{2}{x}=1 \Leftrightarrow x=2 \Rightarrow y=5$

c/ $\begin{cases}  \log_{9}{ \left( x^{2}+1    \right) }-\log_{3}{ \left( y-2   \right)}=0 (1) \\  \log_{2}{ \left( x^{2}-2y^{2}+10y-7    \right) }=2  (2)  \end{cases} $
Điều kiện:$\begin{cases}  y-2>0  \\  x^{2}-2y^{2}+10y-7>0   \end{cases} $
$(1) \Leftrightarrow \log_{3}{\frac{ \sqrt{ x^{2}+1}}{y-2}}=0 \Leftrightarrow \sqrt{x^{2}+1}=y-2$
$x^{2}+1=y^{2}-4y+4 \Leftrightarrow x^{2}=y^{2}-4y+3$
$(2) \Leftrightarrow x^{2}-2y^{2}+10y-7=4 \Leftrightarrow x^{2}-2y^{2}+10y-11=0$
Thế $x^{2}=y^{2}-4y+3$ vào  $(2): y^{2}-4y+3-2y^{2}+!0y-11=0$
$\Leftrightarrow -y^{2}+6y-8=0 \Leftrightarrow \left[ \begin{array}{l}  y=2 (L) \\  y=4  \end{array} \right. $
Với $y=4$  thì $x^{2}=3 \Leftrightarrow x=\pm\sqrt{3}$

d/ $\begin{cases}  4^{\frac{x}{y}+\frac{y}{x}}=32  (1)\\ \log_{3}{\left( x+y   \right) } =1-\log_{3}{\left(  x+y  \right) } (2)  \end{cases} $
$(1)\Leftrightarrow 2^{2\left(\frac{x}{y}+\frac{y}{x}\right)}=2^{5} \Leftrightarrow \frac{x}{y}+\frac{y}{x}=\frac{5}{2} \Leftrightarrow \frac{x^{2}+y^{2}}{xy}=\frac{5}{2} (1')$
$(2) \Leftrightarrow 2\log_{3}{\left( x+y   \right) } =1 (x+y>0)$
$\Leftrightarrow \log_{3}{\left( x+y   \right) } =\frac{1}{2} \Leftrightarrow x+y=3^{\frac{1}{2}}= \sqrt{ 3}$
$\Leftrightarrow x^{2}+y^{2}+2xy=3 \Leftrightarrow x^{2}+y^{2}=3-2xy$ thế vào $(1')$:
$\frac{3-2xy}{xy}=\frac{5}{2} \Leftrightarrow \frac{3}{xy}-2=\frac{5}{2} \Leftrightarrow \frac{3}{xy}=\frac{5}{2}+2=\frac{9}{2}$
$\Leftrightarrow \frac{1}{xy}=\frac{3}{2} \Leftrightarrow xy=\frac{3}{2} \Leftrightarrow \begin{cases}  x+y=\sqrt{3}  \\ xy=\frac{2}{3}    \end{cases} $
$x, y$ theo thứ tự là nghiệm của phương trình:
$X^{2}-\sqrt{ 3}X+\frac{2}{3}=0$
$\left[ \begin{array}{l}  X_{1}=\frac{1}{ \sqrt{ 3}} \\ X_{2}= \frac{2}{ \sqrt{ 3}}  \end{array} \right.\Rightarrow \left[ \begin{array}{l} x=\frac{1}{ \sqrt{ 3}}, y=\frac{2}{ \sqrt{ 3}}  \\  x=\frac{2}{ \sqrt{ 3}} , y=\frac{1}{ \sqrt{ 3}} \end{array} \right.  $

Thẻ

Lượt xem

1086
Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003