Giải các hệ :
$\begin{array}{l}
1)\,\,\,\,\left\{ \begin{array}{l}
{2^{{{\log }_{\frac{1}{2}}}\left( {x + y} \right)}} = {5^{{{\log }_5}\left( {x - y} \right)}}\\
{\log _2}x + {\log _2}y = \frac{1}{2}
\end{array} \right.\\
2)\,\,\,\left\{ \begin{array}{l}
{\log _2}xy.{\log _2}\frac{x}{y} =  - 3\\
\log _2^2x + \log _2^2y = 5
\end{array} \right.\\
3)\,\,\,\left\{ \begin{array}{l}
{x^2} = 1 + 6{\log _4}x\\
{y^2} = {2^x}.y + {2^{2x + 1}}
\end{array} \right.\\
4)\,\,\,\left\{ \begin{array}{l}
{\log _2}x + {\log _4}y + {\log _4}z = 2\\
{\log _3}y + {\log _9}z + {\log _9}x = 2\\
{\log _4}z + {\log _{16}}x + {\log _{16}}y = 2
\end{array} \right.
\end{array}$
$1.$
Điều kiện:
$\left\{ \begin{array}{l} 1\ne x>0\\ 1\ne y>0\\x-y>0 \end{array} \right.$
Hệ đã cho tương đương với:
$\left\{ \begin{array}{l} \frac 1{x+y}=x-y\\ xy=\sqrt{2} \end{array} \right.
\Leftrightarrow \left\{ \begin{array}{l} 1=x^2-y^2\\ y=\frac{\sqrt2}x \end{array} \right.
\Leftrightarrow \left\{ \begin{array}{l} x^4-x^2-2=0\\ y=\frac{\sqrt2}x \end{array} \right.
\\ \Leftrightarrow \left\{ \begin{array}{l} x^2=2\vee x^2=-1(loại)\\ y=\frac{\sqrt2}x \end{array} \right.
\Leftrightarrow \left\{ \begin{array}{l} x=\sqrt2\\ y=1 \end{array} \right.
$
Đáp số:$(\sqrt2,\,\,1)$
$2)$
Điều kiện:
$\left\{ \begin{array}{l} x>0\\y>0 \end{array} \right.$
Hệ đã cho tương đương với:
$\left\{ \begin{array}{l} (\log_2x+\log_2y)(\log_2x-\log_2y)=-3\\ (\log_2x)^2+(\log_2y)^2=5 \end{array} \right.
\Leftrightarrow \left\{ \begin{array}{l} (\log_2x)^2-(\log_2y)^2=-2\\ (\log_2x)^2+(\log_2y)^2=5 \end{array} \right.
\\\Leftrightarrow \left\{ \begin{array}{l} (\log_2x)^2=1\\ (\log_2y)^2=4 \end{array} \right.
\Leftrightarrow \left\{ \begin{array}{l} \log_2x=\pm 1\\ \log_2y=\pm2 \end{array} \right.
\Leftrightarrow \left\{ \begin{array}{l} x=2\vee x=\frac 12\\ y=4\vee \frac14 \end{array} \right.$
Vậy hệ có $4$  nghiệm: $(2;4)(\frac12;4)(2;\frac14)(\frac12; \frac14)$

$3)$
Điều kiện:
$x>0$
Ta có, $x^2=1+6\log_4x\Leftrightarrow  x^2-1-3\log_2x=0$
Đặt $f(x)=x^2-1-3\log_2x$ (với $x>0$)
ta có:  $f'(x)=2x-\frac3{x\ln 2}\\ f'(x)=0\Leftrightarrow x=\sqrt{\frac3 {2\ln 2}}$
Với $0<x<\sqrt{\frac3 {2\ln 2}}$ thì nhận thấy $f(x)$ nghịch biến. Có $f(1)=0\Leftrightarrow x=1$ là nghiệm duy nhất trong khoảng $(0;\sqrt{\frac3 {2\ln 2}})$
Khi $x=1$ ta có: $y^2=2y+8\Leftrightarrow y=4\vee y=-2  (loại)$
Với $\sqrt{\frac3 {2\ln 2}}<x$ thì nhận thấy $f(x)$ đồng biến. Lại có: $f(2)=0\Rightarrow x=2$ là nghiệm duy nhất trong khoảng $(\sqrt{\frac3 {2\ln 2}};+\infty)$
Khi $x=2$ ta có: $y^2=4y+32\Leftrightarrow y=8\vee y=-4  (loại)$
Vậy nghiệm $(x,y)$ của hệ là: $(1;4);(2;8)$

$4)\,\,$Điều kiện: $x,\,y,\,z\, > 0$
   Hệ đã cho tương đương với:
$\left\{ \begin{array}{l}
{\log _2}x\sqrt {yz}  = 2\\
{\log _3}y\sqrt {xz}  = 2\\
{\log _4}z\sqrt {xy}  = 2
\end{array} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow \,\,\,\,\,\,\left\{ \begin{array}{l}
{x^2}yz = 16\\
{y^2}xz = 81\\
{z^2}xy = 256
\end{array} \right.$
Suy ra: $(xyz)^4=16.81.256\Rightarrow xyz=24
\Rightarrow \left\{ \begin{array}{l} x=\frac{16}{24}=\frac23\\ y=\frac{81}{24}=\frac{27}{8}\\z=\frac{256}{24}=\frac{32}{3} \end{array} \right.$
Thử lại thấy thỏa mãn.
Vậy nghiệm $(x,y,z)$ của hệ là: $\left( {\frac{2}{3},\,\frac{{27}}{8},\,\frac{{32}}{3}} \right)$

Thẻ

Lượt xem

1490
Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003