Cho:   $f(x) = 9\frac{2^x + 2^{ - x} - 2}{{2^x + 2^{ - x}} + 2} + 3P\frac{2^x - 1}{2^x+ 1} + q$
    Tìm giá trị của $p, q$ để giá trị lớn nhất của $y = \left| f(x) \right|$ trên đoạn $\left[ { - 1,1}
\right]$ là nhỏ nhất.
Ta có:
Viết $f(x) = 9\frac{{{{\left( {{2^x} - 1} \right)}^2}}}{{{{\left( {{2^x} + 1} \right)}^2}}} +
3{\rm P}\frac{{{2^x} - 1}}{{{2^x} + 1}} + q$
    Đặt $t = \frac{{{2^x} - 1}}{{{2^x} + 1}}$ Với $ - 1 \le x \le 1\,\,\, \Rightarrow \,\,\, -
\frac{1}{3} \le  t \, \le \frac{1}{3}$
      $\begin{array}{l}
F(x) = 9{t^2} + 3{\rm P}t + q\,\,\, \Rightarrow \,\,\,{F^ / }(x) = 18t + 3{\rm P}\\
{F^ / }(x) = 0\,\,\,\, \Leftrightarrow \,\,\,\,\,t =  - \frac{{\rm P}}{6}
\end{array}$
    Hàm số $F(x) = 9{t^2} + 3{\rm P}t + q$  nghịch biến trong $\left( { - \infty , - \frac{{\rm
P}}{6}} \right)$ và đồng biến trong $\left( { - \frac{{\rm P}}{6},\, + \infty } \right)$
  $a)\,\,\, - \frac{{\rm P}}{6} \le  - \frac{1}{{3\,}}\,\,\,\, \Leftrightarrow \,\,\,{\rm P} \ge 2$
    Hàm số tăng trên $\left[ { - \frac{1}{3},\frac{1}{3}} \right]$ nên
   $M = \mathop {Max}\limits_{ - 1 \le x \le 1} \left| {f\left( x \right)} \right| = \mathop

{Max}\limits_{ - \frac{1}{3} \le x \le \frac{1}{3}} \left| {F\left( x \right)} \right| = \mathop

{Max}\limits_{} \left[ {\left| {F\left( {\frac{{ - 1}}{3}} \right)} \right|,\left| {F\left( {\frac{1}{3}}

\right)} \right|} \right]$
   M nhỏ nhất khi $F\left( {\frac{1}{3}} \right) =  - F\left( { - \frac{1}{3}} \right)\,\,\,\,\,

\Leftrightarrow \,\,\,1 + {\rm P} + q =  - \left( {1 - {\rm P} + q} \right)$
         $ \Leftrightarrow \,\,\,q =  - 1\,\,\, \Rightarrow \,\,\,\,M = \left| {\rm P} \right|$. Do ${\rm

P} \ge 2$nên $\min \,{\rm P} = 2$
   Với ${\rm P} \ge 2$ thì $\min M = 2$khi ${\rm P} = 2,\,\,q =  - 1$
   $b)\,\,\, - \frac{1}{3} \le  - \frac{{\rm P}}{6} \le 0\,\,\, \Leftrightarrow \,\,\,0 \le \,{\rm P} \le

\,2$
    $\,\,\,\,\,M = \mathop {Max}\limits_{} \left[ {\left| {F\left( {\frac{{ - 1}}{3}} \right)}

\right|,\left| {F\left( { - \frac{{\rm P}}{6}} \right)} \right|} \right]$ nhỏ nhất khi
$F\left( {\frac{1}{3}} \right) =  - F\left( { - \frac{{\rm P}}{6}} \right)\,\,\,\,\, \Leftrightarrow

\,\,\,1 + {\rm P} + q =  - \left( {q - \frac{{{{\rm P}^2}}}{4}} \right)$
$ \Leftrightarrow \,\,\,{\left( {{\rm P} - 2} \right)^2}\,\,8\left( {1 + q} \right),$ từ đó:   $M = 1 +

{\rm P} + q = {\rm P} + \frac{{{{\left( {{\rm P} - 2} \right)}^2}}}{8} = \frac{{{{\left( {{\rm P} +

2} \right)}^2}}}{8}$
    M nhỏ nhất khi ${\rm P} = 0\,\,\,$và $\min \,M\, = \frac{1}{2}$
   ${\rm P} = 0\,\,\, \Rightarrow \,\,\,q =  - \frac{1}{2}$
   $c)\,\,\,0 \le  - \frac{{\rm P}}{6} \le \frac{1}{3}\,\,\,\, \Leftrightarrow \,\,\, - 2 \le {\rm P} \le 0$
   Tương tự như trường hợp b) ta có:
      $\min \,M = \frac{1}{2},\,\,\,{\rm P} = 0,\,\,q =  - \frac{1}{2}$
    $d)\,\,\,\frac{1}{3} \le  - \frac{{\rm P}}{6}\,\,\, \Leftrightarrow \,\,\,{\rm P} \le  - 2$
    Tương tự như trường hợp $a)$ ta có : $\min \,M = 2,\,\,\,{\rm P} =  - 2,\,\,q =  - 1$
    Từ $4$ trường hợp trên ta suy ra:
    -  Khi ${\rm P} = 0,\,\,q =  - \frac{1}{2}$ thì $\mathop {Max}\limits_{ - \frac{1}{3} \le x \le
\frac{1}{3}} \left| {F\left( x \right)} \right|$$ = \mathop {Max}\limits_{ - 1 \le x \le 1} \left|
{f\left( x \right)} \right| = \frac{1}{2}$

Thẻ

Lượt xem

629
Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003