|
$1$) Đặt $\begin{array}{l} X = 3x + 2y\\ Y = 3x - 2y \end{array}$ ,Điều kiện: $\left\{ \begin{array}{l} X,Y > 0\\ 1 \ne m > 0 \end{array} \right.$ Hệ ($1$) $ \Leftrightarrow \left\{ \begin{array}{l} XY = 5\\ {\log _m}X - {\log _3}Y = 1\,\, \end{array} \right.\,\,\, \Leftrightarrow \,\left\{ \begin{array}{l} Y = \frac{5}{X}\\ {\log _m}X - {\log _3}\frac{5}{X} = 1 \end{array} \right.$ $\begin{array}{l} \Leftrightarrow \,\,\left\{ \begin{array}{l} Y = \frac{5}{X}\\ {\log _m}X - {\log _3}5 + {\log _3}X = 1 \end{array} \right.\\ \Leftrightarrow \,\,\left\{ \begin{array}{l} Y = \frac{5}{X}\\ \frac{{{{\log }_3}X}}{{{{\log }_3}m}} + {\log _3}X = {\log _3}5 + 1 \end{array} \right.\\ \Leftrightarrow \,\,\left\{ \begin{array}{l} Y = \frac{5}{X}\\ {\log _3}X = \frac{{\left( {{{\log }_3}5 + 1} \right){{\log }_3}m}}{{1 + {{\log }_3}m}} \end{array} \right.\,\,\,\,\,\,\,\,\,\,\,(2)\,\,\,\,\,\,\,\,\,\,\,\,m \ne \frac{1}{3} \end{array}$ ($m = \frac{1}{3}$hệ vô nghiệm) Với $m = 5$ ta có : $\left\{ \begin{array}{l} Y = \frac{5}{X}\\ {\log _3}X = {\log _3}5 \end{array} \right. \Leftrightarrow \,\,\,\,\left\{ \begin{array}{l} X = 5\\ Y = 1 \end{array} \right.$ $ \Leftrightarrow \left\{ \begin{array}{l} 3x + 2y = 5\\ 3x - 2y = 1 \end{array} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow \left\{ \begin{array}{l} x = 1\\ y = 1 \end{array} \right.$ Vậy với $m = 5$ hệ có nghiệm là $\left( {1,\,1} \right)$ $2)$ $3x + 2y \le 5\,\,\,\, \Leftrightarrow X \le 5\,\,\, \Leftrightarrow \,\,\,{\log _3}X \le {\log _3}5$ $ \Leftrightarrow \frac{{\left( {{{\log }_3}5 + 1} \right){{\log }_3}m}}{{1 + {{\log }_3}m}} \le {\log _3}5\,\,\,\, \Leftrightarrow \frac{{{{\log }_3}m - {{\log }_3}5}}{{1 + {{\log }_3}m}}\,\,\, \le 0\,\,\,\,\,\,\,(3)$ Đặt $M = {\log _3}m$ ta có $(3) \Leftrightarrow \,\,\,\,\,\,\, - 1 < M < {\log _3}5$ $ \Leftrightarrow \,\,\,\, - 1 < {\log _3}m < {\log _3}5\,\,\,\, \Leftrightarrow \,\,\,\frac{1}{3} < m \le 5$ Vậy giá trị lớn nhất của m là $5$ thì $(1)$ có nghiệm $\left( {x,\,y} \right)$ thỏa mãn : $3x + 2y \le 5$
|