Hãy chứng minh rằng: $1/ \sqrt{a^{2}+b^{2}}+\sqrt{c^{2}+d^{2}}\geq \sqrt{\left ( a+c \right )^{2}+\left ( b+d \right )^{2}},\forall a,b,c,d\in R$ $2/\sqrt{4\cos ^{2}x.\cos ^{2}y+\sin ^{2}\left ( x -y\right )}+\sqrt{4\sin ^{2}x.\sin ^{2}y+\sin ^{2}\left ( x -y\right )}\geq 2,\forall x,y\in R$
|