Cho $a,b,c>0,abc=1$ và $x,y,z,t>0$.Hãy chứng minh:
$1/x+y+z+t\geq 4\sqrt[4]{xyzt}$ ;
$2/x+y+z\geq 3\sqrt[3]{xyz}$ ;
$3/\frac{x^{2}}{y+z}+\frac{y+z}{4}\geq x$ ;
$4/ /\frac{x^{2}}{y+z} + \frac{y^{2}}{z+x}  \frac{z^{2}}{x+y} \geq \frac{x+y+z}{2}$ 
$5/\frac{1}{a^{3}\left ( b+c \right )}+ \frac{1}{b^{3}\left ( c+a \right )} + \frac{1}{c^{3}\left ( a+b \right )}\geq \frac{3}{2} $ 
$1/$ Ta có:$x+y+z+t \geq  4\sqrt[4]{xyzt}$
$\Leftrightarrow \left ( x+y-2\sqrt{xy} \right )+  \left ( z+t-2\sqrt{zt} \right )+ 2\left ( \sqrt{xy} +  \sqrt{zt} -2 \sqrt[4]{xyzt} \right )\geq 0$ 
$\Leftrightarrow \left ( \sqrt{x}-  \sqrt{y} \right )^{2}+ \left ( \sqrt{z}-  \sqrt{t} \right )^{2}+2\left ( \sqrt[4]{xy} - \sqrt[4]{zt} \right )^{2}\geq 0 $ 
Bất đẳng thức cuối luôn đúng $\Rightarrow $  điều phải chứng minh.
$2/$Theo $1/$:
$x+y+z+ \sqrt[3]{xyz} \geq 4 \sqrt[4]{xyz \sqrt[3]{xyz} }= 4 \sqrt[3]{xyz}  $ 
Vậy: $ x+y+z \geq  3\sqrt[3]{xyz} $ 
$3/$Bài toán $\Leftrightarrow 4x^{2}+ \left ( y+z \right )^{2} \geq 4x \left ( y+z \right )  $ 
$\Leftrightarrow  \left ( 2x \right )^{2} + \left ( y+z \right )^{2} -2.2x \left ( y+z \right )\geq 0$ 
$ \Leftrightarrow \left ( 2x-y-z \right )^{2}\geq 0 $ 
Bất đẳng thức cuối  luôn đúng $\Rightarrow $ (ĐPCM)
$4/$ Theo $3/$:
$\frac{ x^{2} }{y+z} + \frac{ y+z }4\geq x$$\left ( 1 \right )$
$\frac{ y^{2} }{z+x} + \frac{ z+x }4\geq y$ $\left ( 2 \right )$ 
$\frac{ z^{2} }{x+y} + \frac{ x+y }4\geq z$  $\left ( 3 \right )$
C ộng  $\left ( 1 \right )$, $\left ( 2 \right )$, $\left ( 3 \right )$ vế với vế ta được:
$ \frac{ x^{2} }{y+z}  + \frac{ y^{2} }{z+x} + \frac{ z^{2} }{x+y} +  \frac{ x+y+z }2\geq x+y+z$
$\Rightarrow $ĐPCM
$5/$Đặt: $u=\frac{1}{a}, v=\frac{1}{b}, w=\frac{1}{c}  $ 
Suy ra: $u,v,w>0$  và $uvw=1$
Áp dụng $2/$ và $4/$ ta có:
$u+v+w\geq 3\sqrt[3]{uvw} =3$
$\frac{u^{2}}{v+w}+ \frac{v^{2}}{w+u}+ \frac{w^{2}}{u+v}\geq \frac{u+v+w}{2}  \geq \frac{3}{2}$ 
Suy ra:$ \frac{1}{a^{3}\left ( b+c \right )}+ \frac{1}{b^{3}\left ( c+a \right )}+ \frac{1}{c^{3}\left ( a+b \right )}=  \frac{bc}{a^{2}\left ( b+c \right )} + \frac{ca}{b^{2}\left ( c+a \right )} + \frac{ab}{c^{2}\left ( a+b \right )}  $
        $= \frac{ u^{2} }{v+w}  + \frac{ v^{2} }{w+u} + \frac{ w^{2} }{u+v} \geq \frac{3}{2}$
Vậy bài toán đã được chứng minh xong.

Thẻ

Lượt xem

820
Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003