Cho $a,b,c>0,abc=1$ và $x,y,z,t>0$.Hãy chứng minh: $1/x+y+z+t\geq 4\sqrt[4]{xyzt}$ ; $2/x+y+z\geq 3\sqrt[3]{xyz}$ ; $3/\frac{x^{2}}{y+z}+\frac{y+z}{4}\geq x$ ; $4/
/\frac{x^{2}}{y+z} +
\frac{y^{2}}{z+x}
\frac{z^{2}}{x+y} \geq \frac{x+y+z}{2}$ $5/\frac{1}{a^{3}\left ( b+c \right )}+
\frac{1}{b^{3}\left ( c+a \right )} +
\frac{1}{c^{3}\left ( a+b \right )}\geq \frac{3}{2} $
|