0
phiếu
3đáp án
2K lượt xem

Giải hộ mionh2 bài bdt này!!!

Cho a,b,c$\in \left[ {0;1} \right]$.CMR:$2(a^{3}+b^{3}+c^{3})-(a^{2}b+b^{2}c+c^{2}a)\leq 3$
1
phiếu
2đáp án
1K lượt xem

jup mjh bài này với

Cho a,b,c$\in\left[ {0;2} \right]$, a+b+c=3cmr:$a^{2}+b^{2}+c^{2}\leq 5$
0
phiếu
1đáp án
1K lượt xem

Giải bài này thử m.n

Cho a, b, c $\geq 0$$, abc=1CMR:a^{3}+b^{3}+c^{3}\geq a+b+c$
0
phiếu
1đáp án
1K lượt xem

Giải giùm mình bài bất đẳng thức này!!!

Cho x,y,z >0, $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4$CMR:$\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\leq 1$
1
phiếu
1đáp án
2K lượt xem

bài này đố ai làm dc

Cho $a_{1},a_{2},a_{3},...a_{n} > 0$ ($3\leq n\in \mathbb{N}$ thoả mãn $a_{1}a_{2}...a_{n}=1$). Chứng minh rằng: $\sqrt[m]{\frac{a_{1}}{a_{1}+(n^m-1)}}+\sqrt[m]{\frac{a_{2}}{a_{2}+(n^m-1)}}+...+\sqrt[m]{\frac{a_{n}}{a_{n}+(n^m-1)}} \geq 1$
1
phiếu
1đáp án
1K lượt xem

chứng minh với a, b, c khong âm

chứng minh với a,b, c không âm $\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\geq a+b+c+\frac{4(a-b)^2}{a+b+c}$
1
phiếu
1đáp án
1K lượt xem

forum đông vui quá nhỉ, làm mấy bài cho vui nào

Cho $x,y,z> 0$ . Khẳng định hoặc phủ định bất đẳng thức sau : $(x+y+z)^4(x^2y^2+y^2z^2+z^2x^2)\geq 81x^2y^2z^2(x^2+y^2+z^2)$
1
phiếu
1đáp án
1K lượt xem

mọi người giải lại jup mình, up rùi mà k thấy ai giải

Giải $x,y$ tự nhiên biết: $x^{2010}+x^{2009}+....+x+2=y^5.$
1
phiếu
1đáp án
1K lượt xem

Một bài BĐT

Cho $a,b,c>0$ thỏa mãn: $ab+bc+ca=\sqrt2$.Chúng minh rằng:...
1
phiếu
1đáp án
1K lượt xem

một bạn trên facebook hỏi

Cho $\sqrt{a+\sqrt{b}}-\sqrt{c}=\sqrt{a+b-c}$. Chứng minh: $\sqrt[2012]{a}+\sqrt[2012]{b}-\sqrt[2012]{2c}=\sqrt[2012]{a+b-c}$
1
phiếu
1đáp án
2K lượt xem

Bất Đẳng thức này

Cho các số dương $a, b, c$ thỏa mãn đk $(a+b)(b+c)(c+a)=1$. Chứng minh rằng: $ab+bc+ca\leq \frac{3}{4}$
1
phiếu
1đáp án
2K lượt xem

Bất đẳng thức này

Cho $a, b, c$ là ba số thực dương thỏa mãn đk: $2(a^2+b^2+c^2)+abc=7$. Chứng minh bất đẳng thức $a+b+c\leq 3$
1
phiếu
3đáp án
4K lượt xem

Thử xem nào

Với $a, b, c$ là các số thực dương thay đổi bất kì. Chứng minh rằng : $a^2+b^2+c^2+2abc+1\geq 2(ab+bc+ca)$
1
phiếu
1đáp án
1K lượt xem

bdt nữa nào

Cho x,y,z>0 CMR: $3(x^2+y^2+z^2) \geq (x+y+z)^2$
1
phiếu
2đáp án
1K lượt xem

thử qua một bài bdt nào,hehe

Cho a,b,c>0 TM abc=1 CMR: $\frac{a^2}{(ab+2)(2ab+1)}+\frac{b^2}{(bc+2)(2bc+1)}+\frac{c^2}{(ca+2)(2ca+1)} \geq \frac{1}{3}$

Trang trước1...140141142143144...147Trang sau 153050mỗi trang
Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003