Đặt x=sint, π2<t<π2, suy ra:
dx=cost.dt;x3dx√1−x2=sin3t.costdtcost=sin3t.dt=14(3sint−sin3t)dt
Khi đó:
∫f(x)dx=14∫(3sint−sin3t)dt=−34cost+112cos3t+C
=∫−34cost+112(4cos3t−3cost)+C=13cos3t−cost+C
=(13cos2t−1)cost+C=[13(1−sin2t)−1]cost+C
=[13(1−x2)−1]√1−x2+C=−13(x2+2)√1−x2+C