a) 2x.32x.53x=2x.9x.125x=2250x⇒∫2x.32x.53xdx=∫2250xdx=2250xln2250+C
b) sin3xsin4xtanx+cot2x=sin3xsin4xsinxcosx+cos2xsin2x=sin3x.sin4xsinxsin2x+cosxcos2xcosxcos2x=sin3xsin4xcos(2x−x)cosxsin2x
=sin4xsin3xsin2x
=12(cosx−cos7x)sin2x=12(sin2xcosx−sin2xcos7x)
=14(sin3x+sinx−sin9x+sin5x)
⇒∫sin3xsin4xtanx+cotxdx=14∫(sin3x+sinx−sin9x+sin5x)dx
=−112cot3x−14cosx+136cos9x−120cos5x+C
c) Ta có : 4cosx.sin4x.cos2x
=2sin4x.(cos3x+cosx)
2sin4xcos3x+2sin4xcosx
sin7x+sinx+sin5x+sin3x
Vậy ∫4cosx.sin4xcos2xdx=∫(sin7x+sinx+sin5x+sin3x)dx
=−17cos7x−cosx−15cos5x−13cos3x+C