Tìm các giá trị lớn nhất và nhỏ nhất của hàm số:  $f(x) = | 1 + 2cos x| + | 1 + 2sin x|$
Hàm $f = \left| {1 + 2\cos x} \right| + \left| {1 + 2\sin x} \right|$ xác định và $ > 0$ với mọi $x$.
Do đó ta xét
${f^2} = {(1 + 2\cos x)^2} + {(1 + 2\sin x)^2} + 2\left| {(1 + c{\rm{osx}})(1 + {\mathop{\rm s}\nolimits} {\rm{inx}})} \right|$
      $ = 6 + 4(c{\rm{osx + sinx}}) + 2\left| {4\sin x\cos x + 2(c{\rm{osx + sinx}}) + 1)} \right|$
Do $2cos xsin x = {(c{\rm{osx + sinx}})^2} - 1 = 2{\sin ^2}(x + \pi /4) - 1$ nên
${f^2} = 6 + 4\sqrt 2 \sin \left( {x + \pi /4} \right) + 2\left| {4{{\sin }^2}\left( {x + \pi /4} \right) + 2\sqrt 2 \sin \left( {x + \pi /4} \right) - 1} \right|$    $(1)$

a)    ${f^2} = 6 + 4\sqrt 2 \sin \left( {x + \pi /4} \right) + $$2\left| {2{{\sin }^2}\left( {x + \pi /4} \right) + 2\sqrt 2 \sin \left( {x + \pi /4} \right) - c{\rm{os2}}\left( {x + \pi /4} \right)} \right| $
$ \le 6 + 4\sqrt 2 \left| {\sin \left( {x + \pi /4} \right)} \right| + $$2\left[ {2{{\sin }^2}\left( {x + \pi /4} \right) + 2\sqrt 2 \left| {\sin \left( {x + \pi /4} \right)} \right| + \left| {c{\rm{os2}}\left( {x + \pi /4} \right)} \right|} \right]$
$ \le 6 + 4\sqrt 2  + 2\left( {2 + 2\sqrt 2  + 1} \right) = 12 + 8\sqrt 2 $,
Dấu = đạt được khi $x + \pi /4 = \pi /2 + 2k\pi  \Leftrightarrow x = \pi /4 + 2k\pi $.
Suy ra $m{\rm{axf  =  }}\sqrt {{\rm{max}}{{\rm{f}}^{\rm{2}}}}  = \sqrt {12 + 8\sqrt 2 }  = 2\left( {1 + \sqrt 2 } \right)$.

b)    Đặt $t = \sin \left( {x + \pi /4} \right),\left| t \right| \le 1$, khi đó $(1)$ trở thành:
${f^2} = 6 + 4\sqrt 2 t + 2\left| {4{t^2} + 2\sqrt 2 t - 1} \right|,\left| t \right| \le 1$
Do $4{t^2} + 2\sqrt 2 t - 1 = 0 \Leftrightarrow t = \left( { - \sqrt 2  \pm \sqrt 6 } \right)/4 \in \left[ { - 1;1} \right]$ nên
${f^2} = \left\{ \begin{array}{l}
4{\left( {\sqrt 2 t + 1} \right)^2}nếu  -1 \le {\rm{t}} \le \left( { - \sqrt 2  + \sqrt 6 } \right)/4,\left( { - \sqrt 2  + \sqrt 6 } \right)/4 \le t \le 1\\
 - 8{t^2} + 8  nếu  -\left( {\sqrt 2  + \sqrt 6 } \right)/4 \le t \le \left( { - \sqrt 2  + \sqrt 6 } \right)/4
\end{array} \right.$
$\begin{array}{l}
 \Rightarrow \min f = \sqrt {\min {f^2}}\\
 = \min \left\{ {\sqrt {4{{\left[ {\sqrt 2 .\left( { - \frac{{\sqrt 2  + \sqrt 6 }}{4}} \right) + 1} \right]}^2}} ;\sqrt { - 8{{\left( { - \frac{{\sqrt 2  + \sqrt 6 }}{4}} \right)}^2} + 8} } \right\}\\
 = \sqrt 3  - 1
\end{array}$
Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003