Chứng minh các bất đẳng thức:
a/ $\frac{ ab}{a+b}+ \frac{ bc}{b+c}+\frac{ ca}{c+a} \leq \frac{ a+b+c}{2} $ đúng $\forall a>0, b>0, c>0$
b/ $\frac{ a}{a+b}+ \frac{ b}{b+c}+ \frac{ c}{c+a}  < \sqrt{ \frac{ a}{b+c}}+ \sqrt{ \frac{ b}{c+a}}+ \sqrt{ \frac{ c}{a+b}}$ đúng $\forall a>0, b>0, c>0$
c/ $ \forall a>0, b>0: \left(\frac{ 1}{a}   \right)^{3} + \left( \frac{ a}{b}   \right)^{3} + b^{3} \geq \frac{ 1}{a}+ \frac{ a}{b}+b$
d/ $\forall x>0, y>0, z>0:$
$\frac{ 2 \sqrt{ x}}{x^{3}+ y^{2}}+ \frac{ 2 \sqrt{ y}}{y^{3}+z^{2}}+\frac{ 2 \sqrt{ z}}{z^{3}+x^{2}} \leq \frac{ 1}{  x^{2} }+ \frac{ 1}{y^{2}}+ \frac{ 1}{z^{2}}$
a/  Xuất phát từ :$\left( a+b   \right)^{2} \geq 4ab \Leftrightarrow \frac{ ab}{a+b}  \leq  \frac{ a+b}{4} $
Tương tự $\frac{ bc}{b+c} \leq \frac{ b+c}{4}; \frac{ ac}{a+c} \leq \frac{ a+c}{4}$
Cộng từng vế $\frac{ ab}{a+b}+ \frac{ bc}{b+c}+\frac{ ca}{c+a} \leq \frac{ a+b+c}{2} $

b/  Với $a>0; b>0; c>0: \frac{ a}{a+b} < \frac{ a+c}{a+b+c}$
Vì $\frac{ a}{a+b} – \frac{ a+c}{a+b+c}= \frac{ a^{2} +ab +ac – a^{2} –ab –ac  -bc}{\left(  a+b  \right) \left(    a+b+c\right) }= \frac{ -bc}{\left(  a+b  \right) \left(    a+b+c\right) }<0 $
Tương tự $\frac{ b}{b+c}< \frac{ a+b}{a+b+c}; \frac{ c}{a+c}< \frac{ b+c}{a+b+c}$
Cộng từng vế: $\frac{ a}{a+b}+ \frac{ b}{b+c}+ \frac{ c}{c+a} < \frac{ 2 \left(a+b+c    \right) }{a+b+c}=2$ $(1)$
Bất đẳng thức Cosi áp dụng cho $a$ và $b+c$
$a+ \left(   b+c \right)  \geq 2 \sqrt{ a \left( b+c   \right) } \Leftrightarrow \frac{ 1}{ \sqrt{ a \left( b+c   \right) }} \geq \frac{ 2}{\sqrt{a+b+c}}$
$ \sqrt{ \frac{ s}{b+c}}= \frac{ a}{ \sqrt{ a \left( b+c   \right) }} \geq \frac{ 2}{a+b+c}$
Tương tự $\sqrt{ \frac{ b}{c+a}}lon \frac{ 2b}{a+b+c}; \sqrt{ \frac{ c}{a+b}} \geq \frac{ 2c}{a+b+c}$
Cộng từng vế $\sqrt{ \frac{ a}{b+c}}+ \sqrt{ \frac{ b}{c+a}}+ \sqrt{ \frac{ c}{a+b}} \geq \frac{ 2 \left( a+b+c   \right) }{a+b+c}=2$
$\frac{ a}{a+b}+ \frac{ b}{b+c}+ \frac{ c}{c+a} <2$
$\sqrt{ \frac{ a}{b+c}}+ \sqrt{ \frac{ b}{c+a}}+ \sqrt{ \frac{ c}{a+b}} \geq 2$
$\Rightarrow $ Đpcm.

c/ $\left(\frac{ 1}{a}   \right)^{3} + \left( \frac{ a}{b}   \right)^{3} + b^{3} \geq \frac{ 1}{a}+ \frac{ a}{b}+b$
Áp dụng bất đẳng thức Cosi cho ba số dương:
$ \left(  \frac{ 1}{a}  \right)^{3}+1+1 \geq 3 \sqrt[ 3]{ \frac{ 1}{a^{3}}}=3.\frac{ 1}{3}; \left( \frac{ a}{b}   \right)^{3} +1+1 \geq 3 \sqrt[3]{ \left(  \frac{ a}{b}  \right)^{2} }=3. \frac{ a}{b}$
$b^{3}+1+1 \geq 3 \sqrt[3]{b^{3}} =3b$
$\Rightarrow \left(\frac{ 1}{a}   \right)^{3} + \left( \frac{ a}{b}   \right)^{3} + b^{3} +6 \geq 3 \left( \frac{ 1}{a}+ \frac{ a}{b}+ b   \right) = \frac{ 1}{a}+ \frac{ a}{b}+b+2 \left(\frac{ 1}{a}+ \frac{ a}{b}+b    \right) $
Nhưng $2 \left(   \frac{ 1}{a}+ \frac{ a}{b}+b \right)  \geq 2. 3 \sqrt[3]{ \frac{ 1}{a}. \frac{ a}{b}.b} =6$
$\Rightarrow \left(\frac{ 1}{a}   \right)^{3} + \left( \frac{ a}{b}   \right)^{3} + b^{3}+b \geq \frac{ 1}{a}+ \frac{ a}{b}+b + 2 \left(\frac{ 1}{a}+ \frac{ a}{b}+b   \right) \geq \frac{ 1}{a}+ \frac{ a}{b}+b +6$
$\Leftrightarrow \left( - \frac{ 1}{a}   \right)^{2} + \left(\frac{ a}{b}    \right)^{2} +b^{3} \geq \frac{ 1}{a}+ \frac{ a}{b}+b $

Có đẳng thức khi $a=b=1$
d/  Áp dụng bất đẳng thức Cosi:
$x^{2} +y^{2} \geq 2 \sqrt{ x^{2} y^{2}}= 2xy \sqrt{ x} \Leftrightarrow \frac{ 2 \sqrt{ x}}{x^{3}+y^{2}} \leq \frac{ 1}{xy}$
Tương tự: $\frac{ 2 \sqrt{ y}}{y^{3}+z^{2}} \leq \frac{ 1}{yz}; \frac{ 2 \sqrt{ z}}{y^{3}+x^{2}} \leq \frac{ 1}{zx}$
Cộng từng vế:$ \frac{ 2 \sqrt{ x}}{x^{3}+y^{2}} \leq \frac{ 1}{xy}+\frac{ 2 \sqrt{ y}}{y^{3}+z^{2}} +\frac{ 2 \sqrt{ z}}{y^{3}+x^{2}} \leq \frac{ 1}{xy}+\frac{ 1}{yz}+\frac{ 1}{zx}$
Nhưng  $\begin{cases}  \frac{ 1}{xy} \leq \frac{ 1}{2} \left(  \frac{ 1}{ x^{2} }+ \frac{ 1}{y^{2}}   \right) \\ \frac{ 1}{yz} \leq \frac{ 1}{2} \left( \frac{ 1}{y^{2}} + \frac{ 1}{z^{2}}   \right)   \\   \frac{ y}{ z^{2}} \leq \frac{ 1}{2} \left(  \frac{ 1}{z^{2}} \frac{ 1}{ x^{2} }  \right)   \end{cases} \Rightarrow \frac{ 1}{xy}+\frac{ 1}{yz}+\frac{ 1}{zx} \leq \frac{ 1}{  x^{2} }+ \frac{ 1}{y^{2}}+ \frac{ 1}{z^{2}} $ đpcm

Thẻ

Lượt xem

662
Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003