Cho $n \in N $\$\left\{ \begin{array}{l} 0,1 \end{array} \right.\left. \right \},x_{1},x_{2},...,x_{n} \geq 0$. Chứng minh các BDT sau: $a)\sqrt[n]{(n+1)!}\geq 1+\sqrt[n]{n!}$ $b)(1+\frac{x_{1}}{nx_{2}})(1+\frac{x_{2}}{nx_{3}})...(1+\frac{x_{n}}{nx_{1}}) \geq (1+\frac{1}{n})^{n}$
|