Giải và biện luận theo tham số $m$:
${\log _3}\left[ {m{x^2} - \left( {{m^2} + 1} \right)x + m} \right] + {\log _{\frac{1}{3}}}\left( { - {x^2} - x + {m^2} + m} \right) \ge 0\,\,\,\,\,\,\,\,\,\,(1)$
$\begin{array}{l}
(1) \Leftrightarrow {\log _3}\left[ {m{x^2} - \left( {{m^2} + 1} \right)x + m} \right] \ge {\log
_3}\left( { - {x^2} - x + {m^2} + m} \right)\\
 \Leftrightarrow m{x^2} - \left( {{m^2} + 1} \right)x + m \ge  - {x^2} - x + {m^2} + m\\
\ \Leftrightarrow \left\{ \begin{array}{l}
m{x^2} - \left( {{m^2} + 1} \right)x + m > 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2)\\
 - {x^2} - x + {m^2} + m \ge 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(3)
\end{array} \right.
\end{array}$
 $f(x) =  - {x^2} - x + {m^2} + m$có $2$ nghiệm $x = m,\,\,\,x =  - m - 1$
 $g(x) = m{x^2} - \left( {{m^2} + 1} \right)x + m$ với $m =  - 1$ có 1 nghiệm $x =  - 1$
 Với $m \ne - 1$ có 2 nghiệm $\,\,\,\,\,x = m,\,\,\,x =  - \frac{m}{{m + 1}}$
 Khi $m = - 1$ thì hệ ($2), (3$) trở thành :  $\left\{ \begin{array}{l}
 - {x^2} - x > 0\\
 - x - 1 \ge 0
\end{array} \right.$hệ này vô nghiệm.
 Khi $m \ne  - 1\,\,\,:$ để có nghiệm của hệ ($2),(3$) ta cần so sánh $3$ số: $m,\,\,\, - m -
1,\,\,\frac{{ - m}}{{m + 1}}$
    xét dấu các hiệu :   $m - \left( { - m - 1} \right) = 2m + 1;$
   $m - \left( {\frac{{ - m}}{{m + 1}}} \right) = \frac{{{m^2} + 2m}}{{m + 1}};\,\,\,\,\,\frac{{ -
m}}{{m + 1}} - \left( { - m - 1} \right) = \frac{{{m^2} + m + 1}}{{m + 1}}$
   Bảng xét dấu:

   Ta có các trường hợp sau:
$a)\,\,m \le  - 2:\,\,\,$do$ - \frac{m}{{m + 1}} <  - m - 1$ nên hệ có nghiệm là:
$m < x <  - \frac{m}{{m + 1}}$
$b)\,\, - 2 < m <  - 1:\,\,\left\{ \begin{array}{l}
m < x <  - m - 1\\
\frac{{ - m}}{{m + 1}} \le x \le m
\end{array} \right.$       vô nghiệm
$c)\,\, - 1 < m <  - \frac{1}{2}:\,\,\,\left\{ \begin{array}{l}
m < x <  - m - 1\\
x \le m\,\,\,;\,\,\,x > \frac{{ - m}}{{m + 1}}
\end{array} \right.$       vô nghiệm
$d)\,\, - \frac{1}{2} \le m < 0:\,\,\left\{ \begin{array}{l}
 - m - 1 < x < m\\
x \le m\,\,\,;\,\,\,x > \frac{{ - m}}{{m + 1}}
\end{array} \right.$
Hệ có nghiệm là:$ - m - 1 < x < m$
$e)\,\,\,\,\,\,\,\,\,\left\{ \begin{array}{l}
 - m - 1 < x < m\\
x \le \frac{{ - m}}{{m + 1}};\,\,\,x \ge m
\end{array} \right.$
$  \Rightarrow $   Hệ có nghiệm là  $ - m - 1 < x \le \frac{{ - m}}{{m + 1}}$
Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003