|
Đặt $ \begin{array}{l} u = a - x\\ v = x - b\\ \Leftrightarrow \left\{ \begin{array}{l} u + v = a - b\\ {u^5} + {v^5} = {\left( {a - b} \right)^5} \end{array} \right.\,\,\,\,\,\,\,(*) \end{array} $ Ta có : $ \begin{array}{l} {u^5} + {v^5} = \left( {u + v} \right)\left\{ {\left[ {{{\left( {u + v} \right)}^2} - 2uv} \right] - uv{{\left( {u + v} \right)}^2} + {u^2}{v^2}} \right\}\\ \Rightarrow {\left( {a - b} \right)^5} = \left( {a - b} \right)\left\{ {{{\left[ {{{\left( {a - b} \right)}^2} - 2uv} \right]}^2} - uv{{\left( {a - b} \right)}^2} + {u^2}{v^2}} \right\}\\ \Leftrightarrow {\left( {a - b} \right)^4} = {\left( {a - b} \right)^4} - 4{\left( {a - b} \right)^2}uv + 4{\left( {uv} \right)^2} - uv{\left( {a - b} \right)^2} + {\left( {uv} \right)^2}\\ \Leftrightarrow 5{\left( {uv} \right)^2} - 5{\left( {a - b} \right)^2}\left( {uv} \right) = 0\\ \Leftrightarrow uv = 0\,\,\,\,\,\, \vee \,\,\,\,\,uv = {\left( {a - b} \right)^2} \end{array} $ Do đó ta có: $ \begin{array}{l} (*) \Leftrightarrow \left\{ \begin{array}{l} u + v = a - b\\ uv = 0 \end{array} \right.\,\,\,\,\,\,\,\,(1) \vee \,\,\,\left\{ \begin{array}{l} u + v = a - b\\ uv = {\left( {a - b} \right)^2} \end{array} \right.\,\,\,\,\,\,\,\,\,(2)\\ (1) \Leftrightarrow \left\{ \begin{array}{l} u = 0\\ v = a - b \end{array} \right.\,\,\,\,\,\, \vee \left\{ \begin{array}{l} u = a - b\\ v = 0 \end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l} a - x = 0\\ x - b = a - b \end{array} \right.\,\,\,\,\,\, \vee \left\{ \begin{array}{l} a - x = a - b\\ x - b = 0 \end{array} \right.\\ \Leftrightarrow x = a\,\,\,\,\,\, \vee \,\,\,\,x = b \end{array} $ (2) vô nghiệm Vậy phương trình đã cho có 2 nghiệm là : $ {x_1} = a;\,\,\,\,{x_2} = b $
|