Giải phương trình:   $(x^2-x+1)^4-6x^2(x^2-x+1)+5x^4=0      (*)$
Chia hai vế phương trình (*) cho  $ {x^4} \ne 0 $, ta có: $ {\left( {\frac{{{x^2} - x + 1}}{x}} \right)^4} - 6{\left( {\frac{{{x^2} - x + 1}}{x}} \right)^2} + 5 = 0 $
Đặt  ${\left( {\frac{{{x^2} - x + 1}}{x}} \right)^2} = y,y > o $ ,
Ta có : $ \begin{array}{l}
{y^2} - 6y + 5 = 0
 \Leftrightarrow y = 5\,\,\,\,\, \vee \,\,\,y = 1
\end{array} $
Với
$ \begin{array}{l}
y = 5 \Rightarrow {\left( {\frac{{{x^2} - x + 1}}{x}} \right)^2} = 5
 \Leftrightarrow \left[ \begin{array}{l}
{x^2} - \left( {\sqrt 5  + 1} \right)x + 1 = 0\,\,\,\,\,\,\,\,\,\,\,(1)\\
{x^2} + \left( {\sqrt 5  + 1} \right)x + 1 = 0\,\,\,\,\,\,\,\,\,\,\,\,(2)
\end{array} \right.
\end{array} $
(2) vô nghiệm trên R.
(1) có 2 nghiệm : $ {x_{1,2}} = \frac{{\sqrt 5  + 1 \pm \sqrt {2\left( {\sqrt 5  + 1} \right)} }}{2}\,\,\,\,\,\,\,\,(a) $
Với 
$ \begin{array}{l}
y = 1 \Rightarrow {\left( {\frac{{{x^2} - x + 1}}{x}} \right)^2} = 1
 \Leftrightarrow \left[ \begin{array}{l}
{x^2} - 2x + 1 = 0\,\,\,\,\,\,\,(3)\\
{x^2} + 1 = 0\,\,\,\,\,\,\,\,\,\,\,(4)
\end{array} \right.
\end{array} $
(4) vô nghiệm
(3) có nghiệm kép x = 1                       (b)
Vậy phương trình đã cho có 3 nghiệm cho bởi (a) và (b).

Cách 2 :

Đặt  $ t = {\left( {{x^2} - x + 1} \right)^2},\,\,\,t \ge 0 $
Ta có:
$ \begin{array}{l}
{t^2} - 6{x^2}t + 5{x^4} = 0
 \Leftrightarrow t = 5{x^2}\,\,\,\, \vee \,\,\,\,t = {x^2}
\end{array} $
Giải phương trình 
$ t = 5{x^2} $ 
$ \begin{array}{l} \Rightarrow {\left( {{x^2} - x + 1} \right)^2} = 5{x^2}\\
\Leftrightarrow \left[ {{x^2} - \left( {\sqrt 5  + 1} \right)x + 1} \right]\left[ {{x^2} + \left( {\sqrt 5  - 1} \right)x} \right] + 1 = 0\\
\Leftrightarrow {x^2} - \left( {\sqrt 5  + 1} \right)x + 1 = 0\\
\Leftrightarrow x = \frac{{\sqrt 5  + 1 \pm \sqrt {2\left( {\sqrt {5 + 1} } \right)} }}{2}
\end{array} $
Giải phương trình 
$ t = {x^2} $
$ \begin{array}{l}
\Rightarrow {\left( {{x^2} - x + 1} \right)^2} = {x^2} \Leftrightarrow \left( {{x^2} - 2x + 1} \right)\left( {{x^2} + 1} \right) = 0\\
\Leftrightarrow {x^2} - 2x + 1 = 0\\
\Leftrightarrow x = 1
\end{array} $
Vậy  phương trình đã cho có 3 nghiệm.

Thẻ

Lượt xem

1261

Lý thuyết liên quan

Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003