CMR trong tam giác $ABC$ có $a,b,c$ lập thành cấp số cộng tương đương với các điều kiện sau đây:
$a)$ $1. tan\frac{A}{2}tan\frac{C}{2} = \frac{1}{3}$                     $3.\frac{{{h_b}}}{{{l_b}}} = \sqrt {\frac{{2r}}{R}} $                          $5.{h_b} = 3r$
   $2. \sin A\sin C = 3{\sin ^2}\frac{B}{2}$            $4.{h_b} = {r_b}$                                     $6.$$S = \frac{2}{3}l_b^2\sin B$
$b)$ CMR nếu $a,b,c$ lập thành cấp số cộng,thì công sai cấp số cộng đó là
                                        $d = \frac{3}{2}r(tan\frac{C}{2} - tan\frac{A}{2})$
$a)$
$1)$ theo giả thiết ta có
$\begin{array}{l}
2b = a + c\\
 \Leftrightarrow 2\sin B = \sin A + \sin C\\
 \Leftrightarrow 4\sin \frac{B}{2}c{\rm{os}}\frac{B}{2} = 2\sin \frac{{A + C}}{2}c{\rm{os}}\frac{{A - C}}{2}(1)
\end{array}$
Do $\sin \frac{{A + C}}{2} = c{\rm{os}}\frac{B}{2}\# 0$ nên từ (1) suy ra $2b = a + c \Leftrightarrow 2\cos \frac{{A + C}}{2} = c{\rm{os}}\frac{{A - C}}{2}$
$\begin{array}{l}
 \Leftrightarrow 2\cos \frac{A}{2}c{\rm{os}}\frac{C}{2} - 2\sin \frac{A}{2}\sin \frac{C}{2} = \cos \frac{A}{2}\cos \frac{C}{2} + \sin \frac{A}{2}\sin \frac{C}{2}\\
 \Leftrightarrow tg\frac{A}{2}tg\frac{C}{2} = \frac{1}{3}
\end{array}$
Đó là $dpcm$
$2)$ ,ta có :
$\begin{array}{l}
\sin A\sin B = 3{\sin ^2}\frac{C}{2}\\
 \Leftrightarrow \frac{a}{{2R}}\frac{b}{{2R}} = 3\frac{{{{\sin }^2}C}}{{2(1 + \cos C)}}\\
 \Leftrightarrow \frac{{ab}}{{4{R^2}}} = 3\frac{{{c^2}}}{{4{R^2}.2(1 + \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}})}}\\
 \Leftrightarrow ab = \frac{{3{c^2}ab}}{{{{(a + b)}^2} - {c^2}}}\\
 \Leftrightarrow {(a + b)^2} - {c^2} = 3{c^2}\\
 \Leftrightarrow a + b = 2c\\
 \Rightarrow dpcm
\end{array}$
$3)$

Và ${\sin ^2}(C + \frac{B}{2}) = c{\rm{o}}{{\rm{s}}^2}\frac{{C - A}}{2}$ ,suy ra
$\frac{{{h_b}}}{{{l_b}}} = \sqrt {\frac{{2r}}{R}} $
$\begin{array}{l}
 \Leftrightarrow c{\rm{o}}{{\rm{s}}^2}\frac{{C - A}}{2} = 8\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\\
 \Leftrightarrow c{\rm{o}}{{\rm{s}}^2}\frac{{C - A}}{2} = 4\sin B(c{\rm{os}}\frac{{C - A}}{2} - c{\rm{os}}\frac{{C + A}}{2})
\end{array}$
$\begin{array}{l}
 \Leftrightarrow c{\rm{o}}{{\rm{s}}^2}\frac{{C - A}}{2} - 4\sin \frac{B}{2}c{\rm{os}}\frac{{C - A}}{2} + 4{\sin ^2}\frac{B}{2} = 0\\
 \Leftrightarrow {(c{\rm{os}}\frac{{C - A}}{2} - 2\sin \frac{B}{2})^2} = 0\\
 \Leftrightarrow c{\rm{os}}\frac{{C - A}}{2} = 2\sin \frac{B}{2}\\
 \Leftrightarrow 2\cos \frac{B}{2}c{\rm{os}}\frac{{C - A}}{2} = 4\sin \frac{B}{2}c{\rm{os}}\frac{B}{2}\\
 \Leftrightarrow 2\sin \frac{{A + C}}{2}c{\rm{os}}\frac{{C - A}}{2} = 2\sin B\\
 \Leftrightarrow \sin C + \sin A = 2\sin B\\
 \Leftrightarrow a + c = 2b\\
 \Rightarrow dpcm
\end{array}$
$4)$ Ta có :   
$\begin{array}{l}
{h_b} = {r_b} \Leftrightarrow 2R\sin A\sin C = p.tg\frac{B}{2}\\
 \Leftrightarrow 2R.4.\sin \frac{A}{2}c{\rm{os}}\frac{A}{2}\sin \frac{C}{2}c{\rm{os}}\frac{C}{2} = 4Rc{\rm{os}}\frac{A}{2}c{\rm{os}}\frac{B}{2}c{\rm{os}}\frac{C}{2}.\frac{{\sin \frac{B}{2}}}{{c{\rm{os}}\frac{B}{2}}}\\
 \Leftrightarrow 2\sin \frac{A}{2}\sin \frac{C}{2} = \sin \frac{B}{2}\\
 \Leftrightarrow 2\sin \frac{A}{2}\sin \frac{C}{2} = c{\rm{os}}\frac{{A + C}}{2}\\
 \Leftrightarrow 2\sin \frac{A}{2}\sin \frac{C}{2} = c{\rm{os}}\frac{A}{2}c{\rm{os}}\frac{C}{2} - \sin \frac{A}{2}\sin \frac{C}{2}\\
 \Leftrightarrow 3\sin \frac{A}{2}\sin \frac{C}{2} = c{\rm{os}}\frac{A}{2}c{\rm{os}}\frac{C}{2}\\
 \Leftrightarrow tg\frac{A}{2}tg\frac{C}{2} = \frac{1}{3}\\
 \Leftrightarrow a + c = 2b
\end{array}$
(theo phần $1$)Đó là $dpcm$
$5)$ ${h_b} = 3r \Leftrightarrow 2R\sin A\sin C = 3.4R\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}$
$ \Leftrightarrow 8R\sin \frac{A}{2}\sin \frac{C}{2}c{\rm{os}}\frac{A}{2}c{\rm{os}}\frac{C}{2} = 12R\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}$
$\begin{array}{l}
 \Leftrightarrow 2\cos \frac{A}{2}c{\rm{os}}\frac{C}{2} = 3\sin \frac{B}{2}\\
 \Leftrightarrow 2\cos \frac{A}{2}c{\rm{os}}\frac{C}{2} = 3\cos \frac{{A + C}}{2}\\
 \Leftrightarrow 2\cos \frac{A}{2}c{\rm{os}}\frac{C}{2} = 3\cos \frac{A}{2}c{\rm{os}}\frac{C}{2} - 3\sin \frac{A}{2}\sin \frac{C}{2}\\
 \Leftrightarrow 3\sin \frac{A}{2}\sin \frac{C}{2} = c{\rm{os}}\frac{A}{2}c{\rm{os}}\frac{C}{2}
\end{array}$
$ \Leftrightarrow tg\frac{A}{2}tg\frac{C}{2} = \frac{1}{3}$
Theo ($1$) suy ra $dpcm$
$6)$ ta có ${l_b} = \frac{{2ac\cos \frac{B}{2}}}{{a + c}}$
Vì thế  $l_b^2 = \frac{{4{a^2}{c^2}c{\rm{o}}{{\rm{s}}^2}\frac{B}{2}}}{{{{(a + c)}^2}}} = \frac{{ac}}{{{{(a + c)}^2}}}\left[ {{{(a + c)}^2} - {b^2}} \right]$
Từ đó suy ra
$\begin{array}{l}
a + c = 2b\\
 \Leftrightarrow l_b^2 = \frac{{ac(4{b^2} - {b^2})}}{{4{b^2}}}\\
 \Leftrightarrow l_b^2 = \frac{3}{4}ac\\
 \Leftrightarrow l_b^2 = \frac{3}{4}\frac{{2S}}{{\sin B}}\\
 \Leftrightarrow S = \frac{2}{3}l_b^2\sin {\bf{B}}
\end{array}$
Đó là $dpcm$

$b)$ Giả sử tam giác $ABC$ có $a+c=2b$,theo phần $1$ ta có$tg\frac{A}{2}tg\frac{C}{2} = \frac{1}{3}$
Rõ ràng $\frac{3}{2}r(tg\frac{C}{2} - tg\frac{A}{2}) = \frac{3}{2}4R\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\frac{{\sin \frac{{C - A}}{2}}}{{c{\rm{os}}\frac{A}{2}c{\rm{os}}\frac{C}{2}}}$
$\begin{array}{l}
 = 6R\sin \frac{B}{2}\sin \frac{{C - A}}{2}tg\frac{A}{2}tg\frac{C}{2}\\
 = 2R\cos \frac{{A + C}}{2}\sin \frac{{C - A}}{2}\\
 = R(\sin C - \sin A)\\
 = \frac{{c - a}}{2} = d
\end{array}$
Đó là $dpcm$


Thẻ

Lượt xem

920
Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003