|
Điều kiện: $7x^2+7>0.$ Khi đó ta có: $(1) \Leftrightarrow \,\,\,\,7{x^2} + 7 \ge m{x^2} + 4x + m,\,\,\,\forall x \in \,R\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,$ $ \Leftrightarrow \left\{ \begin{array}{l} \left( {7 - m} \right){x^2} - 4x + 7 - m \ge 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2)\\ m{x^2} + 4x + m > 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(3) \end{array} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,$$\forall x \in \,R\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,$ $m = 7\,\,\,$$(2)$ không thỏa mãn $\forall x \in \,R\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,$ $m = 0$ $(3)$ không thỏa mãn $\forall x \in \,R\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,$ $(1)$ thỏa mãn $\forall x \in \,R\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,$ $ \Leftrightarrow \left\{ \begin{array}{l} 7 - m > 0\\ {\Delta _2}' = 4 - {\left( {7 - m} \right)^2} \le 0\\ m > 0\\ {\Delta _3}' = 4 - {m^2} < 0 \end{array} \right.$ $ \Leftrightarrow \left\{ \begin{array}{l} m < 7\\ m \le 5\\ m > 0\\ m > 2 \end{array} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, $ $\Leftrightarrow 2 < m \le 5$
Vậy giá trị cần tìm của m là $2 < m \le 5.$
|