Giải các bất phương trình :
$\begin{array}{l}
1)\,\,\,{\log _2}{\log _{\frac{1}{2}}}\left( {{2^x} - {4^x}} \right) \le 1\\
2)\,\,{\log _x}2.{\log _{2x}}2 > {\log _{4x}}2\\
3)\,\,3{\log _x}4 + 2{\log _{4x}}4 + 3{\log _{16x}}4 \ge 0
\end{array}$
$1)$
Điều kiện: $\left\{ \begin{array}{l}  2^x-4^x>0 \\\log_\frac{1}{2}(2^x-4^x)>0\end{array} \right.$
Khi đó BPT đã cho tương đương
$0 < {\log _{\frac{1}{2}}}\left( {{2^x} - {4^x}} \right) \le 2$
$\Leftrightarrow \,\,\,\frac{1}{4} \le {2^x} - {4^x} < 1$
$\Leftrightarrow \left\{ \begin{array}{l} 2^{2x}-2^x+\frac{1}{4}\leq 0\\ 2^{2x}-2^x+1>0 \end{array} \right.$
$ \Leftrightarrow \left\{ \begin{array}{l} \left ( 2^x-\frac{1}{2} \right )^2\leq 0\\ \left ( 2^x-\frac{1}{2} \right )^2 +\frac{3}{4}>0 \end{array} \right. \Rightarrow 2^x=\frac{1}{2}(TM)\Leftrightarrow x=-1$
Vậy BPT có nghiệm $x=-1$.

$2)$ 
Điều kiện: $\left\{ \begin{array}{l} x>0\\ x\notin\left\{ {1;\frac{1}{2};\frac{1}{4}} \right\} \end{array} \right.$
Khi đó BPT đã cho tương đương 
$\frac{1}{\log_2x}.\frac{1}{\log_22x}>\frac{1}{\log_24x}$
$\Leftrightarrow \frac{1}{\log_2x(\log_2x+1)}>\frac{1}{\log_2x+2}$
Đổi ra cơ số 2 và đặt $t = {\log _2}x$
$\Rightarrow \frac{1}{t^2+t}>\frac{1}{t+2}$
$\Leftrightarrow  \frac{1}{t^2+t}-\frac{1}{t+2} >0$
$\Leftrightarrow \frac{(t+2)-(t^2+t)}{t(t+1)(t+2)}>0$
$\Leftrightarrow (t^2-2)t(t+1)(t+2)<0$.
Lập bảng xét dấu, ta rút ra được
$\left[ \begin{array}{l} 0<t<\sqrt2\\ t<-2\\-\sqrt2<t<1 \end{array} \right.\Leftrightarrow \left[  \begin{array}{l}  1 < x < {2^{\sqrt 2 }}\\0 < x < \frac{1}{4}\\\frac{1}{{{2^{\sqrt 2 }}}} < x < 1,\,\,x \ne \frac{1}{2} \end{array} \right.(TM)$
Vậy nghiệm BPT đã cho là:     $\left[  \begin{array}{l}  1 < x < {2^{\sqrt 2 }}\\0 < x < \frac{1}{4}\\\frac{1}{{{2^{\sqrt 2 }}}} < x < 1,\,\,x \ne \frac{1}{2} \end{array} \right.$ 

$3)$ 
Điều kiện: $ \left\{ \begin{array}{l} x>0\\ x\notin\left\{ {1;\frac{1}{4};\frac{1}{16}} \right\} \end{array} \right. $
Khi đó BPT đã cho tương đương 
$\frac{3}{\log_4x}+\frac{2}{\log_44x}+\frac{3}{\log_416x}\geq 0$
$\Leftrightarrow  \frac{3}{\log_4x}+\frac{2}{\log_4x+1}+\frac{3}{\log_4x+2}\geq 0 $
Chọn $4$ làm cơ số, đặt $t = {\log _4}x$
$\Rightarrow  \frac{3}{t}+\frac{2}{t+1}+\frac{3}{t+2}\geq 0  $
$\Leftrightarrow \frac{3(t+1)(t+2)+2t(t+2)+3t(t+1)}{ t\left( {t + 1} \right)\left( {t + 2} \right) }\geq 0$
$\Leftrightarrow  \frac{{4{t^2} + 8t + 3}}{{t\left( {t + 1} \right)\left( {t + 2} \right)}} \ge 0 $
Giải $\frac{{4{t^2} + 8t + 3}}{{t\left( {t + 1} \right)\left( {t + 2} \right)}} \ge 0\,\,\,\,\,\,\,\,\,\,$
Ta có $ \left[ \begin{array}{l}
-2<t\leq -\frac{1}{2}-1\\
-1<t\leq  -\frac{1}{2} \\
t>0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
\frac{1}{{16}} < x \le \frac{1}{8}\\
\frac{1}{4} < x \le \frac{1}{2}\\
x > 1
\end{array} \right.(TM)$
Vậy nghiệm của BPT là $ \left[ \begin{array}{l}
\frac{1}{{16}} < x \le \frac{1}{8}\\
\frac{1}{4} < x \le \frac{1}{2}\\
x > 1
\end{array} \right. .$

Thẻ

Lượt xem

810
Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003