|
Điều kiện : $\left\{ \begin{array}{l} {x^2} - 5x + 6 > 0\\ x - 2 > 0\\ x + 3 > 0 \end{array} \right. \Leftrightarrow x > 3$ $\begin{array}{l} {\log _3}\sqrt {{x^2} - 5x + 6} + {\log _{\frac{1}{3}}}\sqrt {x - 2} > \frac{1}{2}{\log _{\frac{1}{\sqrt{3}}}}\left( {x + 3} \right)\, (1)\\
\end{array}$ $\begin{array}{l} (1) \Leftrightarrow {\log _3}\sqrt {\left( {x - 2} \right)\left( {x - 3} \right)} - {\log _3}\sqrt {x - 2} > - {\log _3}\sqrt {x + 3} \\ \,\,\,\,\,\,\, \Leftrightarrow {\log _3}\sqrt {x - 3} > - {\log _3}\sqrt {x + 3} \\ \,\,\,\,\,\,\, \Leftrightarrow {\log _3}\sqrt {{x^2} - 9} > 0\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow \sqrt {{x^2} - 9} > 1\\ \,\,\,\,\,\,\, \Leftrightarrow {x^2} > 10\\ \,\,\,\,\,\,\, \Leftrightarrow x > \sqrt {10} \end{array}$
|