Giải các bất phương trình :

$\begin{array}{l}
1)\,\,\,\log _2^2\left( {2 + x - {x^2}} \right) + 3{\log _{\frac{1}{2}}}\left( {2 + x - {x^2}} \right) + 2 \le 0\,\,\,\,\,\,\,\,\,\,\,(1)\\
2)\,\,{\log _{x + 1}}{\left( {{x^2} + x - 6} \right)^2} \ge 4\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2)\\
3)\,\,\,{\log _{9{x^2}}}\left( {6 + 2x - {x^2}} \right) \le \frac{1}{2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(3)\\
4)\,\,\,{9^{\sqrt {{x^2} - 3} }} + 3 <28. {3^{\sqrt {{x^2} - 3}  - 1}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(4)
\end{array}$
$1)$    
Điều kiện: $2+x-x^2>0\Rightarrow -1<x<2.$
Chọn cơ số chung là $2$ ta có:
 $(1) \Leftrightarrow \,\,\,\,\,\log _2^2\left( {2 + x - {x^2}} \right) - 3{\log _2}\left( {2 + x - {x^2}} \right) + 2 \le 0\,$
Đặt $t = \log _2^{}\left( {2 + x - {x^2}} \right)$ thì ta có
$t^2-3t+2\leq 0$
$\Leftrightarrow (t-1)(t-2)\leq 0$
$\Leftrightarrow 1\leq t\leq 2$
$\Leftrightarrow  1\leq \log_2(2+x-x^2)\leq 2 $
$\Leftrightarrow 2\leq 2+x-x^2\leq 4$ (do hàm $f(x)=\log_2x$ tăng trên TXĐ)
$\Leftrightarrow \left\{ \begin{array}{l} x^2-x\leq 0\\ x^2-x+2\geq 0 \end{array} \right.$
$\Leftrightarrow \left\{ \begin{array}{l} x(x-1)\leq 0\\ \left ( x-\frac{1}{2} \right )^2+\frac{7}{4}\geq 0 (Đ) \end{array} \right.$
$\Rightarrow 0\leq x\leq 1$ (thỏa tập xác định)
Vậy BPT đã cho có nghiệm :  $0 \le x \le 1$

$2)$
Điều kiện: $\left\{ \begin{array}{l} 0<x+1\neq 1\\ x^2+x-6\neq 0 \end{array} \right.\Rightarrow \left\{ \begin{array}{l} -1<x\\ x\notin \left\{ {0;2} \right\} \end{array} \right.$
Khi đó ta có
$(2) \Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
x + 1 > 1\\
{\left( {{x^2} + x - 6} \right)^2} \geq  {\left( {x + 1} \right)^4}
\end{array} \right.\\
\left\{ \begin{array}{l}
0 < x + 1 < 1\\
0 < {\left( {{x^2} + x - 6} \right)^2} \le {\left( {x + 1} \right)^4}
\end{array} \right.
\end{array} \right.$
$\Leftrightarrow  \left[ \begin{array}{l}
\left\{ \begin{array}{l}
x > 2\\
{\left( {{x^2} + x - 6} \right)} \geq {\left( {x + 1} \right)^2}
\end{array} \right.(I)\\
\left\{ \begin{array}{l}
0 < x + 1 < 1\\
{\left( {{x^2} + x - 6} \right)} \geq -{\left( {x + 1} \right)^2}
\end{array} \right.(II)
\end{array} \right. \vee   \left\{ \begin{array}{l} 0<x<2\\
{\left( {{x^2} + x - 6} \right)} \le -{\left( {x + 1} \right)^2}
\end{array} \right. (III)$
$(I)\Leftrightarrow  \left\{ \begin{array}{l} x>0\\ x+8\leq 0\end{array} \right. (L)$
$(II)\Leftrightarrow \left\{ \begin{array}{l} -1<x<0\\ 2x^2+3x-5\geq 0\end{array} \right.\Leftrightarrow \left\{ \begin{array}{l} -1<x<0\\ (2x+5)(x-1)\geq 0\end{array} \right.(L)$
$(III)\Leftrightarrow \left\{ \begin{array}{l} 0<x<2\\  2x^2+3x-5\leq 0  \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} 0<x<2\\ (2x+5)(x-1)\leq 0\end{array} \right. \Rightarrow 0<x\le 1(TM)$
Vậy hệ đã cho có nghiệm : $0 < x \le 1$

$3)$
Điều kiện: $\left\{ \begin{array}{l} 0<9x^2\neq 1\\ 6+2x-x^2>0 \end{array} \right.\Rightarrow \left\{ \begin{array}{l} x\notin\left\{ {0;\pm\frac{1}{3}} \right\}\\ 1-\sqrt7<x<1+\sqrt7 \end{array} \right.$
Khi đó ta có
$(3)\Leftrightarrow \left[ \begin{array}{l} \left\{ \begin{array}{l} 9x^2\geq 1\\x>0\\ 6-2x+x^2\geq 3x \end{array} \right.\vee \left\{ \begin{array}{l} 9x^2> 1\\x\leq 0\\ 6-2x+x^2\leq -3x \end{array} \right.  \\  \left\{ \begin{array}{l} 9x^2\leq 1\\x>0\\ 6-2x+x^2\leq 3x \end{array} \right. \vee  \left\{ \begin{array}{l} 9x^2\leq 1\\x\leq 0\\ 6-2x+x^2\geq -3x \end{array} \right.  \end{array} \right. $
$ \Leftrightarrow \left[ \begin{array}{l} \left\{ \begin{array}{l} x\geq \frac{1}{3}\\ x\geq 5\vee x\leq 1\end{array} \right.\vee \left\{ \begin{array}{l}  x\leq -\frac{1}{3} \\ x^2+x+6\leq 0 \end{array} \right. (L) \\  \left\{ \begin{array}{l}  0<x\leq \frac{1}{3} \\ 1\leq x\leq 5\end{array} \right. \vee  \left\{ \begin{array}{l} -\frac{1}{3}\leq x\leq 0\\  x^2+x+6\leq 0  \end{array} \right.  \end{array} \right.  $
$\Leftrightarrow \left[ \begin{array}{l}
1 - \sqrt 7  < x \le  - 1\\
 - \frac{1}{3} < x < 0\\
0 < x < \frac{1}{3}\\
2 \le x < 1 + \sqrt 7
\end{array} \right.$

$4)$
Điều kiện: $x^2\geq 3$
Đặt $t = {3^{\sqrt {{x^2} - 3} }},\,\,\,{x^2} \ge 3,\,\,t \ge 1$
$(4) \Leftrightarrow {t^2} + 3 < \frac{{28}}{3}t\,\,\,$
$\Leftrightarrow \frac{1}{3} < t < 9$
$\Leftrightarrow -1< \sqrt {{x^2} - 3} <2\Leftrightarrow  \left[ \begin{array}{l}
 - \sqrt 7  < x \le  - \sqrt 3 \\
\sqrt 3  \le x < \sqrt 7 
\end{array} \right. $
ĐS :   $\left[ \begin{array}{l}
 - \sqrt 7  < x \le  - \sqrt 3 \\
\sqrt 3  \le x < \sqrt 7
\end{array} \right.$

Thẻ

Lượt xem

908
Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003