|
1) Điều kiện: ${{6^{x + 1}} - {{36}^x}}>0$. Khi đó ta có $\begin{array}{l} \,\,\,\,{\log _{\frac{1}{{\sqrt 5 }}}}\left( {{6^{x + 1}} - {{36}^x}} \right) \ge - 2\\ \Leftrightarrow \left\{ \begin{array}{l} {6^{x + 1}} - {36^x} > 0\\ {6^{x + 1}} - {36^x} \le \left (\frac{1}{\sqrt5}\right )^{-2}=5 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} {6^x}\left( {6 - {6^x}} \right) > 0\\ {6.6^x} - {6^{2x}} \le 5 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} {6^x} < 6\\ {6^{2x}} - {6.6^x} + 5 \ge 0 \end{array} \right.\\ \,\,\, \Leftrightarrow \left[ \begin{array}{l} {6^x} \le 1\\ 5 \le {6^x} < 6 \end{array} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow \left[ \begin{array}{l} x \le 0\\ {\log _6}5 \le x < 1 \end{array} \right.(TM) \end{array}$ Vậy BPT có nghiệm $\left[ \begin{array}{l} x \le 0\\ {\log _6}5 \le x < 1 \end{array} \right.$
$2)$ Điều kiện: $5^{x+1}-25^x>0$. Khi đó ta có: $\begin{array}{l} \,\,\,\,{\log _{\frac{1}{{\sqrt 6 }}}}\left( {{5^{x
+ 1}} - {{25}^x}} \right) \ge - 2\\ \Leftrightarrow \left\{
\begin{array}{l} {5^{x + 1}} - {25^x} > 0\\ {5^{x + 1}} - {25^x} \le \left(\frac{1}{\sqrt6}\right )^{-2}=6 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} {5^x}\left( {5 - {5^x}} \right) > 0\\ {5.5^x} - {5^{2x}} \le 6 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} {5^x} < 5\\ {5^{2x}} - {5.5^x} + 6 \ge 0 \end{array} \right.\\ \,\,\, \Leftrightarrow \left[ \begin{array}{l} {5^x} \le 2\\ 3 \le {5^x} < 5 \end{array} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow \left[ \begin{array}{l} x \le \log_52\\ {\log _5}3 \le x < 1 \end{array} \right.(TM) \end{array}$ Vậy BPT có nghiệm $\left[ \begin{array}{l}
x \le \log_52\\
{\log _5}3 \le x < 1
\end{array} \right.$
|