Giải các bất phương trình :

$\begin{array}{l}
1)\,\,\,{\log _{{x^2}}}\left( {3 - 2x} \right) > 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\\
2)\,\,{\log _x}\frac{3}{{8 - 2x}} >  - 2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2)\\
3)\,\,{\log _{{x^2}}}\frac{{2x}}{{\left| {x - 3} \right|}} \le \frac{1}{{2\,}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(3)
\end{array}$


$1)$
Điều kiện: $\left\{ \begin{array}{l} x\neq\pm1\\ x<\frac{3}{2}\\x\neq0 \end{array} \right.$
Khi đó BPT đã cho trở thành 
$(1) \Leftrightarrow \left\{ \begin{array}{l}
{x^2} > 1\\
3 - 2x > {x^2}
\end{array} \right.\,\,\,\,\,\,\,(a)$        hoặc   $\left\{ \begin{array}{l}
0 < {x^2} < 1\\
0 < 3 - 2x < {x^2}
\end{array} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(q)$
$\begin{array}{l}
(a) \Leftrightarrow  \left\{ \begin{array}{l} x^2>1\\ x^2+2x-3<0 \end{array} \right.\Leftrightarrow \left\{ \begin{array}{l} \left[  \begin{array}{l} x>1\\ x<-1 \end{array} \right.\\ -3<x<1 \end{array} \right.\Rightarrow - 3 < x <  - 1(TM)\\
(q) \Leftrightarrow \left\{ \begin{array}{l} -1<x<1\\ x^2+2x-3>0 \end{array} \right.\Leftrightarrow \left\{ \begin{array}{l} -1<x<1\\ \left[\begin{array}{l} x>1\\ x<-3 \end{array} \right. \end{array} \right.\Rightarrow \left\{ \begin{array}{l}
- 1 < x < 1,\,x \ne 0\\
x <  - 3\,\,\,;\,\,x > 1
\end{array} \right.
\end{array}$
Vậy $(q)$ vô nghiệm
Tóm lại bất phương trình $(1)$ có nghiệm:
$$ - 3 < x <  - 1$$
$2)$   
Điều kiện : $\left\{ \begin{array}{l} 0<x\neq1\\ 8-2x>0 \end{array} \right.\Rightarrow \left\{ \begin{array}{l} 0<x\neq1\\ x<4 \end{array} \right.$
Khi đó BPT đã cho tương đương
$\left[ \begin{array}{l}  \left\{ \begin{array}{l} 4>x>1\\ \frac{3}{8-2x}>\frac{1}{x^2} \end{array} \right.(I)\\ \left\{ \begin{array}{l}  0<x<1\\  \frac{3}{8-2x}<\frac{1}{x^2}  \end{array} \right.(II) \end{array} \right.$
Ta có
$(I)\Leftrightarrow \left\{ \begin{array}{l} 1<x<4\\ 3x^2+2x-8>0 \end{array} \right.\Leftrightarrow \left\{ \begin{array}{l}  1<x<4\\ (3x-4)(x+2)>0 \end{array} \right.\Leftrightarrow \left\{ \begin{array}{l}  1<x<4 \\ \left[ \begin{array}{l} x > \frac{4}{3}\\ x < -2 \end{array} \right. \end{array} \right.$
$\Rightarrow  \frac{4}{3} < x < 4 $ .
$(II)\Leftrightarrow \left\{ \begin{array}{l}  0<x<1 \\  3x^2+2x-8 < 0  \end{array} \right.\Leftrightarrow \left\{ \begin{array}{l}   0<x<1 \\  (3x-4)(x+2) < 0  \end{array} \right.\Leftrightarrow \left\{ \begin{array}{l}  0<x<1 \\ -2 < x < \frac{4}{3} \end{array} \right.$ 
$\Rightarrow  0<x<1 $ 
Tóm lại bất phương trình $(2)$ có nghiệm:       $$\left[ \begin{array}{l}
0 < x < 1\\
\frac{4}{3} < x < 4
\end{array} \right.$$ 
$3)$   
Điều kiện : $\left\{ \begin{array}{l} x\notin\left\{ {0;1} \right\}\\ x>0 \end{array} \right.$ 
Khi đó BPT đã cho tương đương
$ \log_ { x^2 }\frac{4x^2 }{(x-3)^2}\leq 1 $ 
$\Leftrightarrow  \left[ \begin{array}{l}  \left\{ \begin{array}{l} x>3\\  \frac{4x^2 }{(x-3)^2}\leq {x^2} \end{array} \right.(I)\\ \left\{ \begin{array}{l}  1<x<3\\ \frac{4x^2 }{(x-3)^2}\leq {x^2} \end{array} \right.(II) \\ \left\{ \begin{array}{l}  0<x<1\\ \frac{4x^2 }{(x-3)^2}\geq {x^2} \end{array} \right.(III)  \end{array} \right. $
$(I)\Leftrightarrow \left\{ \begin{array}{l} 3<x\\ x(x-3)\geq 2x \end{array} \right.\Leftrightarrow \left\{ \begin{array}{l} 3<x \\x(x-5)\geq 0 \end{array} \right.\Leftrightarrow x\geq 5.$
$(II)\Leftrightarrow \left\{ \begin{array}{l}  1<x<3 \\ x(3-x)\geq 2x \end{array} \right.\Leftrightarrow \left\{ \begin{array}{l}  1<x<3 \\x(x-1)\leq  0 \end{array} \right.\Leftrightarrow\left\{ \begin{array}{l} 1<x<3 \\ 0\leq x\leq 1\end{array} \right.(L)$
$(III)\Leftrightarrow \left\{ \begin{array}{l}  0<x<1 \\ x(3-x)\leq 2x \end{array} \right.\Leftrightarrow \left\{ \begin{array}{l}    0<x<1 \\x(x-1)\geq  0 \end{array} \right.\Leftrightarrow\left\{ \begin{array}{l} 0<x<1\\ x\notin\left[ {0;1} \right] \end{array} \right.(L)$ 
Tóm lại nghiệm BPT đã cho là $x \ge 5$

Thẻ

Lượt xem

815
Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003