17
phiếu
1đáp án
1K lượt xem

BĐT

Cho a,b,c là các số dương thỏa mãn $a+b+c=3$.CMR:$a^{2}b+b^{2}c+c^{2}a\geq \frac{9a^{2}b^{2}c^{2}}{1+2a^{2}b^{2}c^{2}}$
4
phiếu
1đáp án
378 lượt xem

bdt 9 hay

Cho $a, b, c, d$ là các số thực:Cmr: $(1+ab)^2+(1+cd)^2+(ac)^2+(bd)^2 \ge 1$
10
phiếu
4đáp án
2K lượt xem

BĐT số 2

Xét các số thực dương $x, y$ thỏa mãn $x+y+xy=3$. Tìm Max$P=\frac{3x}{y+1}+\frac{3y}{x+1}+\frac{xy}{x+y}-x^2-y^2$
6
phiếu
1đáp án
778 lượt xem

Mọi người giải giúp mk bài này với

Cho $a,b$ là các số thực dương thỏa $a+b=1$CMR $\frac{1}{a^{2}} + \frac{1}{b^{2}} \geq 8$
6
phiếu
1đáp án
989 lượt xem

Giải bất đẳng thức hộ cái :v

cho 3 số thực $x, y, z$ thỏa mãn $xyz=2\sqrt{2}$. Chứng minh rằng :$\frac{x^8 + y^8}{x^4 + y^4 +x^2.y^2} +\frac{y^8 + z^8}{y^4 + z^4 +y^2.z^2} + \frac{z^8 + x^8}{z^4 + x^4 + z^2.x^2} \geq 8 $
9
phiếu
2đáp án
1K lượt xem

BĐT số 1

Cho $x, y, z$ không âm thỏa mãn: $x^2+y^2+z^2=3$. Tìm max: $P=xy+yz+zx+\frac{4}{x+y+z}$
6
phiếu
1đáp án
1K lượt xem

m.n ơi giúp với

Cmr:Với mọi a,b,c >0 ta có:$\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\geq \frac{1}{2a+b+c}+\frac{1}{2b+c+a}+\frac{1}{2c+a+b}$
2
phiếu
2đáp án
921 lượt xem

Nhanh nha

Cho a,b,c la cac so duong . Chung minh bat dang thuc $\sqrt{\frac{a}{b+c}} + \sqrt{\frac{b}{a+c}} +\sqrt{\frac{c}{a+b}} \geq 2$
4
phiếu
1đáp án
758 lượt xem

bdt hay

Cho $a, b, c$ là các số thực dương thỏa mãn: $a+b+c=\frac{3\sqrt{3}}{\sqrt{2}}$. Tìm giá trị lớn nhất của biểu thức:$P=\sum \frac{1}{a^2+b^2+3}$
5
phiếu
2đáp án
858 lượt xem

Cho $a,b,c$ là các số thực ko âm, chứng minh :

$$a^3+b^3+c^3\ge 3abc+\frac 94|(a-b)(b-c)(c-a)|$$
5
phiếu
1đáp án
705 lượt xem

Cho $a,b,c>0$ và $ab+ac+bc=3$

Chứng minh rằng $$\frac{1}{a^{2}+1}+\frac{1}{b^{2}+1}+\frac{1}{c^{2}+1}\geq \frac{3}{2}$$
7
phiếu
2đáp án
898 lượt xem

CMR....

Cho các số thực dương a,b,c.CM$\frac{2.(a^{3}+b^{3}+c^{3})}{abc}+\frac{9.(a+b+c)^{2}}{a^{2}+b^{2}+c^{2}}\geq 33$
5
phiếu
1đáp án
570 lượt xem

bất đẳng thức nè

cho các só thực dương a,b,c thõa mãn a.b.c=1Tìm giá trị lớn nhát của biểu thức P=1\( a+b+1) + 1\(b+c+1) + 1\(a+c+1)
11
phiếu
0đáp án
1K lượt xem

ONLINE HỌC TẠI NHÀ THÌ ĐỪNG BỎ LỠ THƯ VIỆN-NGUỒN BÀI TẬP, DẠNG BÀI TẬP KHÁ ĐẦY ĐỦ LÀ CÔNG LAO TO LỚN CỦA ĐỘI NGŨ ADMIN HUYỀN THOẠI

Chào mọi người Như tiêu đề Khờ muốn nhắc nhở tất cả các member của HTN đừng lãng quên cái Thư Viện thật sự quý giá của HTN...Theo mình thấy tình...
7
phiếu
1đáp án
1K lượt xem

Giúp minh với nha !!!

Cho $a,b,c$ là các số thực dương thỏa mãn : $ab+bc+ca \leq 3$ . Tìm Min : $T=\frac{12}{4ab+(a+b)(c+3)}+\frac{\sqrt{2(a^{2}+1)(b^{2}+1)(c^{2}+1)}}{(a+1)(b+1)}+\frac{1}{2c^{2}}$
19
phiếu
1đáp án
1K lượt xem

Bài toán chưa có lời giải ...

Cho $x,y,z$ là các số thực thỏa mãn $x^{2}+y^{2}+z^{2}=8$Tìm min,max:H=$\left| {x^{3}-y^{3}} \right|+\left| {y^{3}-z^{3}} \right|+\left| {z^{3}-x^{3}} \right|$
11
phiếu
4đáp án
2K lượt xem

Cho $a,b,c$ là các số thực thuộc đoạn $\left[ \frac 13;3 \right]$. Chứng minh :

$$\frac 75 \le \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a} \le \frac 85$$
4
phiếu
1đáp án
762 lượt xem

Sử dụng BTP: $\frac{1}{a}+\frac{1}{b}\geqslant \frac{4}{a+b}$ Tìm gtnn của $\frac{2}{xy}+\frac{3}{x^2+y^2}$ với x,y dương và x+y=1

Sử dụng BTP: $\frac{1}{a}+\frac{1}{b} \geqslant \frac{4}{a+b}$Tìm gtnn của $\frac{2}{xy}+\frac{3}{x^2+y^2}$ với $x, y$ dương và $x+y=1$
4
phiếu
1đáp án
1K lượt xem

giúp với ạ

Cho $a, b, c$ bất kì, chứng minh rằng: $(ab+bc+ca)^{2} \geq 3abc(a+b+c)$
4
phiếu
0đáp án
524 lượt xem

Hỏi bất phương trình!

Cho 3 số thực x,y,z thỏa:\begin{cases}x,y,z \geqslant 0 \\ 4(x^{3}+y^{3}) +z^{3}=2(x+y+z)(xy+yz-2) \end{cases}Tìm max của $P = \frac{2x^{2}}{3x^{2}+y^{2}+2x(z+2)} + \frac{y+z}{x+y+z+2} - \frac{(x+y)^{2}+z^{2}}{16}$
24
phiếu
2đáp án
4K lượt xem

Chuyên đề III, Ngày 20, Một số kĩ năng sử dụng BĐT cổ điển.

Vâng kết thúc Ngày 1 của chuyên đề 1 anh thấy khá nhàm chán thì ta chuyển hẳn sang Ngày 20 ngày đau tiên của chyên đề III luyện Bất Đẳng Thức, anh...
4
phiếu
0đáp án
871 lượt xem

cần gấp m.n làm giúp vs

Cho $a,b,c$ là độ dài 3 cạnh của 1 tam giác chứng minh rằng $\frac{3}{2} < \sqrt{\frac{a}{b+c}} +\sqrt{\frac{b}{a+c}} +\sqrt{\frac{c}{a+b}} < \frac{4 \pi }{5}$
10
phiếu
12đáp án
7K lượt xem

Cho $a,b,c$ là các số thực dương có tích bằng 1. Cm:

$\frac{1}{\sqrt{1+8a}}+\frac{1}{\sqrt{1+8b}}+\frac{1}{\sqrt{1+8c}} \ge 1$
6
phiếu
3đáp án
1K lượt xem

Cho $a,b,c$ là các số thực ko âm, cm:

$\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}} \ge2$
10
phiếu
0đáp án
354 lượt xem

bđt

cho $\frac{1}{2}\leq a \leq 1 \leq b \leq2 \leq c\leq3,a+b+c=4$.tìm $Min$P=$\frac{1}{a^{2}}+\frac{3}{b^{2}+2}+\frac{5}{c^{2}+6} +\frac{3abc+8}{24}$
9
phiếu
1đáp án
1K lượt xem

Cho $x,y,z>0.$ Chứng minh: $\frac{(x+1)(y+1)^2}{3\sqrt[2]{z^2x^2}+1}+\frac{(y+1)(z+1)^2}{3\sqrt[3]{x^2y^2}+1}+\frac{(z+1)(x+1)^2}{3\sqrt[3]{y^2z^2}+1}\geq x+y+z+3$

Cho $x,y,z>0.$ Chứng minh: $\frac{(x+1)(y+1)^2}{3\sqrt[2]{z^2x^2}+1}+\frac{(y+1)(z+1)^2}{3\sqrt[3]{x^2y^2}+1}+\frac{(z+1)(x+1)^2}{3\sqrt[3]{y^2z^2}+1}\geq x+y+z+3$
8
phiếu
1đáp án
663 lượt xem

Cho $\left\{ \begin{array}{l} a,b,c>0\\ a^2+b^2+c^2=\frac{1}{3} \end{array} \right..$ Chứng minh: $\frac{ab}{\sqrt{ab+c}}+\frac{bc}{\sqrt{bc+a}}+\frac{ca}{\sqrt{ca+b}}\leq \frac{1}{2}$

Cho $\left\{ \begin{array}{l} a,b,c>0\\ a^2+b^2+c^2=\frac{1}{3} \end{array} \right..$ Chứng minh: $\frac{ab}{\sqrt{ab+c}}+\frac{bc}{\sqrt{bc+a}}+\frac{ca}{\sqrt{ca+b}}\leq \frac{1}{2}$
7
phiếu
1đáp án
588 lượt xem

Cho $x,y,z>0.$ Chứng minh rằng: $\frac{1}{2xy+1}+\frac{1}{2yz+1}+\frac{1}{2zx+1}>\frac{1}{x(y+z)+2}+\frac{1}{y(z+x)+2}+\frac{1}{z(x+y)+2}$

Cho $x,y,z>0.$ Chứng minh rằng: $\frac{1}{2xy+1}+\frac{1}{2yz+1}+\frac{1}{2zx+1}>\frac{1}{x(y+z)+2}+\frac{1}{y(z+x)+2}+\frac{1}{z(x+y)+2}$
5
phiếu
0đáp án
313 lượt xem

Cho $\left\{ \begin{array}{l} x,y,z>0\\ x+y+z=1 \end{array} \right..$ Chứng minh rằng: $\frac{1}{2x^2+3yz}+\frac{1}{2y^2+3zx}+\frac{1}{2z^2+3xy}\geq \frac{27}{5}$

Cho $\left\{ \begin{array}{l} x,y,z>0\\ x+y+z=1 \end{array} \right..$ Tìm min:$\frac{1}{2x^2+3yz}+\frac{1}{2y^2+3zx}+\frac{1}{2z^2+3xy}$
5
phiếu
7đáp án
3K lượt xem

mọi người làm bài này bằng bao nhiêu cách..?

$a, b, c \in R+$Tìm min của $S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}$

Trang trước1...1516171819...74Trang sau 153050mỗi trang
Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003