Cho $\Delta ABC$ thỏa mãn:  $ab \sin \frac{ C}{ 2} + bc \sin \frac{ A}{ 2} +ac \sin \frac{ B}{ 2} = 2S \sqrt{3}   (1) $
Chứng minh $\Delta ABC$ đều.
Hướng dẫn: Áp dụng công thức tính diện tích tam giác
          $S =  \frac{ 1}{ 2} ab \sin C = \frac{ 1}{ 2} bc \sin A = \frac{ 1}{ 2} ac \sin B$
$(1)     \Leftrightarrow \frac{ 1}{ \cos \frac{ C}{ 2} } +\frac{1 }{\cos \frac{ B}{ 2}  } + \frac{ 1}{ \cos \frac{ A}{ 2} } = 2 \sqrt{3} $
Áp dụng bất đẳng thức Cô si:
           $\cos \frac{ A}{ 2} +\cos \frac{ B}{ 2} +\cos \frac{ C}{ 2}  \geq  3 \sqrt[3]{\cos \frac{ A}{ 2} \cos \frac{ B}{ 2} \cos \frac{ C}{ 2}  } $
          $\frac{ 1}{\cos \frac{ A}{ 2}  } + \frac{ 1}{ \cos \frac{ B}{ 2} } +\frac{1 }{ \cos \frac{C }{ 2} }  \geq 3 \frac{ 1}{\sqrt[3]{\cos \frac{ A}{ 2} \cos \frac{ B}{ 2}\cos \frac{ C}{ 2} }   }  $
nên $\left ( \cos  \frac{ A}{ 2} +\cos \frac{ B}{ 2}+\cos \frac{ C}{ 2}     \right )\left ( \frac{ 1}{ \cos \frac{ A}{2 } } + \frac{1 }{\cos \frac{ B}{ 2}  }+\frac{1 }{ \cos \frac{ C}{ 2} }   \right ) \geq  9   (2)$ dấu đẳng
thức xảy ra khi và chỉ khi $A=B=C$
Chứng minh:  $\cos \frac{A }{ 2} +\cos \frac{ B}{ 2} +\cos \frac{ C}{ 2}  \leq   \frac{ 3 \sqrt{3} }{ 2}   (3)$
Thật vậy, Đặt $T=\cos \frac{A }{ 2} +\cos \frac{ B}{ 2} +\cos \frac{ C}{ 2}$
Ta có: $T=\frac{2}{\sqrt{3} }\left[ {\cos \frac{A}{2}. \frac{\sqrt{3} }{2} +\cos \frac{B}{2}. \frac{\sqrt{3} }{2} } \right]+\sqrt{3}\left[ {\frac{\cos \frac{A}{2} }{\sqrt{3} }.\sin \frac{B}{2}  +\frac{\cos \frac{B}{2} }{\sqrt{3} }.\sin \frac{A}{2}  } \right]   $
$\leq \frac{1}{\sqrt{3} }\left[ {\left( {\cos^2 \frac{A}{2}+\frac{3}{4}} \right) }+ \left( {\cos^2 \frac{B}{2}+\frac{3}{4}} \right)  \right]+ $
$+\frac{\sqrt{3}}{2}\left[ {\left( {\frac{\cos^2 \frac{A}{2} }{3}+\sin^2 \frac{B}{2} } \right) }+ \left ( \frac{\cos ^2 \frac{B}{2} }{3}+ \sin ^2 \frac{A}{2}  \right ) \right]  $
$=\frac{3 \sqrt{3} }{2} $
Dấu bằng xảy ra khi: $A=B=C=60^0$ hay $\Delta ABC$ đều.
Từ $(2)$ và $(3)$ ta được : $\frac{ 1}{\cos \frac{ A}{ 2}  } + \frac{1 }{\cos \frac{ B}{ 2}  } +\frac{ 1}{ \cos \frac{ C}{ 2} } \geq  2 \sqrt{3} $  dấu đẳng thức xảy ra
khi và chỉ khi tam giác $ABC$ đều. Vậy $(1)$ đúng thì tam giác $ABC$ đều.

Thẻ

Lượt xem

1432
Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003