Tính các giới hạn sau :
a) I=lim
b) J = \mathop {\lim }\limits_{ } \frac{1^6+2^6+...+n^6}{n^7}
c) K = \mathop {\lim }\limits_{ } \frac{1}{2n+1}\left ( \sin \frac{\pi}{n}+\sin \frac{2\pi}{n}+...+ \sin \frac{n-1}{n}\pi\right ).
a) Xét f(x) = \frac{1}{x+1}, x \in  [0;1]
   * Phân hoạch đoạn [0;1] :
            x_0 = 0 < x_1 = \frac{1}{n} < x_2=\frac{2}{n}<...<x_i = \frac{i}{n}<...< x_n = 1
   * Chọn \xi _i = x_i =\frac{i}{n}, i = \overline{1,n}
   * Tổng Riemann của f :
                \sum\limits_{i = 1}^{n}f(\xi _i)(x_i - x_{x-1}) = \sum\limits_{i = 1}^{n} \frac{1}{n+1} = \mathop {\lim }\limits_{n \to +\infty} \sum\limits_{i = 1}^{n}f(\xi _i)(x_i - x_{i-1} )
                         =\int\limits_{0}^{1} f(x)dx = \int\limits_{0}^{1}\frac{dx}{x+1} = \ln 2
b) Xét f(x) = x^6, x \in  [0;1]
    * Phân hoạch đoạn [0;1] :
            x_0 = 0 < x_1 = \frac{1}{n} < x_2=\frac{2}{n}<...<x_i = \frac{i}{n}<...< x_n = 1
   * Chọn \xi _i = x_i =\frac{i}{n}, i = \overline{1,n}
   * Tổng Riemann của f :
\sum\limits_{i = 1}^{n}f(\xi _i)(x_i - x_{x-1}) = \sum\limits_{i = 1}^{n}\left ( \frac{i}{n}  \right )^6.\frac{i}{n} =   \sum\limits_{i = 1}^{n}\frac{i^6}{n^7}
\Rightarrow J = \mathop {\lim }\limits_{n \to +\infty} \sum\limits_{i = 1}^{n}\frac{i^6}{n^7} = \mathop {\lim }\limits_{n \to +\infty} \sum\limits_{i = 1}^{n}f(\xi _i)(x_i -x_{i-1} = \int\limits_{0}^{1}f(x)dx = \int\limits_{0}^{1}x^6dx
     = \frac{x^7}{7} \left| \begin{array}{l} 1\\ 0 \end{array} \right. = \frac{1}{7}.
c) Xét f(x) = \sin x, x \in  [0;\pi ]
    * Phân hoạch đoạn [0;1] :
         x_0 <x_1 = \frac{\pi }{n} <x_2 = \frac{2\pi}{n}<...< x_i  = \frac{i\pi}{n}<...< x_n = \pi
    * Chọn \xi _i = x_i = \frac{i\pi}{n}, i = \overline{1,n}
    * Tổng Riemann của f :
\sum\limits_{i = 1}^{n}f(\xi_i)(x_i - x_{i-1}) = \sum\limits_{i = 1}^{n}\frac{\pi}{n}\sin \frac{i\pi}{n} = \frac{\pi}{n}\sum\limits_{i = 1}^{n-1}\sin \frac{i\pi}{n}
\Rightarrow \mathop {\lim }\limits_{n \to +\infty} \frac{\pi}{n}\sum\limits_{i = 1}^{n-2}\sin \frac{i\pi}{n} = \mathop {\lim }\limits_{n \to +\infty} \sum\limits_{i = 1}^{n}f(\xi _i)(x_i-x_{i-1}) = \int\limits_{0}^{\pi }f(x)dx = \int\limits_{0}^{\pi }\sin xdx
                = - \cos \left| \begin{array}{l} \pi \\ 2 \end{array} \right. = 2
\Rightarrow K = \frac{1}{\pi }\mathop {\lim }\limits_{n \to +\infty} \left [ \frac{n}{2n+1}\left ( \frac{\pi}{n}\sum\limits_{i = 1}^{n-1}\sin \frac{i\pi}{n}   \right )\right ] = \frac{1}{\pi }\mathop {\lim }\limits_{n \to +\infty} \frac{n}{2n+1}. \mathop {\lim }\limits_{n \to +\infty} \frac{1}{n}\sum\limits_{i = 1}^{n-1}\sin \frac{i\pi}{n}
                = \frac{1}{2\pi }.2 = \frac{1}{\pi}.       

Thẻ

Lượt xem

2144
Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003