Cho $f(x) = \frac{1}{4}x^2 - \frac{1}{2}\ln x - \frac{1}{4}, (x >0).$ Tính $ \mathop {\lim }\limits_{ }\left [ \frac{1}{n}\sum\limits_{i = 1}^{n}f \left ( \frac{i}{n}  \right )\right ].$
Ta có : $ f'(x) = \frac{x}{2} - \frac{1}{2x} = \frac{x^2-1}{2x} <0 \forall x \in  (0;1)$
$ \Rightarrow f$ giảm trên $(0;1)$
Khi đó : với $ x \in  \left [ \frac{i}{n};\frac{i+1}{n}\right ], i \in  [1;2;...;n-1], 2 \leq  n \in  Z$, ta có :
         $ f \left ( \frac{i+1}{n}  \right ) < f(x) < f \left (\frac{i}{n} \right )$
$\Rightarrow \int\limits_{\frac{i}{n} }^{\frac{i+1}{n} } f \left ( \frac{i+1}{n}  \right )dx <   \int\limits_{\frac{i}{n} }^{\frac{i+1}{n} }f(x)dx < \int\limits_{\frac{i}{n} }^{\frac{i+1}{n} }f \left ( \frac{i}{n}  \right )dx.$
$\Rightarrow \frac{1}{n}f \left ( \frac{i+1}{n}  \right ) < \int\limits_{\frac{i}{n} }^{\frac{i+1}{n} }f(x)dx < \frac{1}{n}f \left ( \frac{i}{n}  \right )$
$\Rightarrow \frac{1}{n}\sum\limits_{i = 1}^{n - 1} \int\limits_{\frac{i}{n} }^{\frac{i+1}{n} }f(x)dx < \frac{1}{n} \sum\limits_{i = 1}^{n - 1}f \left ( \frac{1}{n}  \right )$
$\Rightarrow \frac{1}{n}\sum\limits_{i = 1}^{n}f \left ( \frac{i}{n}  \right )-\frac{1}{n}f \left ( \frac{i}{n}  \right ) \leq  \int\limits_{\frac{1}{n} }^{1}f(x)dx \leq  \frac{1}{n} \sum\limits_{i = 1}^{n}f \left ( \frac{1}{n}  \right )-\frac{1}{n}f(1)$
$\Rightarrow \int\limits_{\frac{1}{n} }^{1}f(x)dx + \frac{1}{n}f(1) \leq  \frac{1}{n}\sum\limits_{i = 1}^{n}f \left ( \frac{1}{2n}  \right ) \leq  \int\limits_{\frac{1}{n}}^{1}f(x)dx + \frac{1}{n}f \left ( \frac{1}{n}  \right )$               (1)
Hơn nữa :
* $ f(1) = 0$
* $\frac{1}{n}f \left ( \frac{1}{n}  \right )   = \frac{1}{n} \left [ \frac{1}{4n^2}-\frac{1}{2} \ln \frac{1}{n}-\frac{1}{4} \right ]  = \frac{1}{4n^3} + \frac{1}{2n}\ln n - \frac{1}{4n}$
$ \int\limits_{\frac{1}{n} }^{1}f(x)dx = \frac{x^3}{12} - \frac{1}{2}(x\ln x - x) - \frac{1}{4} x\left| \begin{array}{l}
1\\
\frac{1}{n}
\end{array} \right. = \frac{1}{3}- \frac{1}{12n^3}+\frac{\ln n}{2n}-\frac{1}{4n}$
$\Rightarrow \mathop {\lim }\limits_{n \to +\infty  }\left [\int\limits_{\frac{1}{n} }^{1} f(x)dx + \frac{1}{n}f(1)\right ] = \mathop {\lim }\limits_{n \to +\infty} \left [ \int\limits_{\frac{1}{n} }^{1}f(x)dx + \frac{1}{n}f \left ( \frac{1}{n}  \right )\right ] = \frac{1}{3}$           (2)
Từ (1) và (2) $\Rightarrow \mathop {\lim }\limits_{n \to +\infty}\sum\limits_{i = 1}^{n}f \left ( \frac{i}{n}\right ) = \frac{1}{3}.$

Thẻ

Lượt xem

1205
Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003