Chứng minh rằng:
$C_{n}^{0}-\frac{1}{3}C_{n}^{1}+\frac{1}{5}C_{n}^{2}+...+\frac{(-1)^{n}}{2n+1}C_{n}^{n}\geq \sqrt{\frac{3n+1}{4n^{2}+4n+1}}$
Xét: $\int\limits^{1}_{0}(1-x^{2})^{n}dx,n \in N^{*}$
* Đặt: $x=\sin t \Rightarrow  dx=\cos tdt$
  $\Rightarrow \int\limits^{1}_{0}(1-x^{2})^{n}dx=\int\limits^{\frac{\pi}{2}}_{0} \cos ^{2n+1}t.dt=I_{2n+1}$
* Đặt: $u=\cos ^{2n}t \Rightarrow du=-2n \sin t.\cos t ^{2n-1}dt$
$dv=\cos tdt \Rightarrow v=\sin t \Rightarrow I_{2n+1}=[\cos ^{2n}t.\sin t]^{\frac{\pi}{2}}_{0}+2n\int\limits^{\frac{\pi}{2}}_{0}\sin ^{2}t \cos ^{2n-1}t.dt$
$=2n \int\limits^{\frac{\pi}{2}}_{0} (\cos ^{2n-1}t-\cos ^{2n+1}t).dt=2nI_{2n-1}-2nI_{2n+1}$
$\Rightarrow \frac{I_{2n+1}}{I_{2n-1}}=\frac{2n}{2n+1}$
Suy ra: $\frac{I_{3}}{I_{1}}.\frac{I_{5}}{I_{3}}...\frac{I_{2n}}{I_{2n+1}}=\frac{2}{3}.\frac{4}{5}...\frac{2n}{2n+1}$
$\Rightarrow I_{2n+1}=\frac{2}{3}.\frac{4}{5}...\frac{2n}{2n+1}.I_{1}$
Mà: $I_{1}=\int\limits^{1}_{0} dx=1$
$\Rightarrow I_{2n+1}=\frac{2}{3}.\frac{4}{5}...\frac{2n}{2n+1} (1)$
và: $ I_{2n+1}=\int\limits^{1}_{0} (1-x^{2})^{n}dx=\int\limits^{1}_{0}\sum\limits_{k=0}^n C^{k}_{n}.(-1)^{k}.x^{2k}dx$
$=\sum\limits_{k=0}^n C^{k}_{n}.\frac{(-1)^{k}}{2k+1} (2)$
Từ $(1)$ và $(2)$ $\Rightarrow C_{n}^{0}-\frac{1}{3}C_{n}^{1}+\frac{1}{5}C_{n}^{2}+...+\frac{(-1)^{n}}{2n+1}C_{n}^{n}=\frac{2}{1}.\frac{4}{3}...\frac{2n}{2n-1}\frac{1}{2n+1}$
$\geq \sqrt{3n+1}.\frac{1}{2n+1}= \sqrt{\frac{3n+1}{4n^{2}+4n+1}}$.Đúng.
(Theo nguyên lý quy nạp:ta chứng minh bài toán nhỏ:$ \frac{1}{2}.\frac{3}{4}...\frac{2n-1}{2n} \leq \frac{1}{\sqrt{3n+1}}$
*$n=1$: BĐT luôn đúng.
*$n=k$: Giả sử BĐT đúng,tức là:
$\frac{1}{2}.\frac{3}{4}...\frac{2k-1}{2k}.\frac{2k+1}{2k+2}\leq \frac{1}{\sqrt{3k+1}}.\frac{2k+1}{2k+2}(3)$
$(\frac{1}{\sqrt{3k+1}}.\frac{2k+1}{2k+2})^{2}=\frac{(2k+1)^{2}}{(3k+1)(4k^{2}+8k+4)}=\frac{(2k+1)^{3}}{12k^{3}+28k^{2}+20k+4}$
$=\frac{(2k+1)^{2}}{(12k^{3}+28k^{2}+19k+4)+k}=\frac{(2k+1)^{2}}{(2k+1)^{2}(3k+4)+k}$
$< \frac{(2k+1)^{2}}{((2k+1)^{2}(3k+4)}=\frac{1}{3k+4} (4) $
Từ $(3)$ và $(4)$ suy ra: $\frac{1}{2}.\frac{3}{4}...\frac{2n-1}{2n}\leq \frac{1}{\sqrt{3n+1}}$)
$\Rightarrow$ (ĐPCM)

Thẻ

Lượt xem

1084
Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003