Cho tứ diện $SABC$ có $\Delta ABC$ vuông tại $B, AB=a, SA\bot (ABC)$ và $SA=a;   AH\bot SB$ tại $H;   AK\bot SC$ tại $K$
a) Chứng minh $HK\bot SC$
b) Gọi $I=HK\cap BC$. Chứng minh $B$ là trung điểm của $CI$
c) Tính $sin$ góc $\varphi$ giữa $SB$ và $(AHK)$
d) Xác định tâm và bán kính mặt cầu ngoại tiếp $SABC$

Chọn hệ trục tọa độ $Axyz$ sao cho $A(0;0;0), B(a;0;0), C(a;a;0), s(0;0;a)$

a) Ta có: $\overrightarrow{SB}=(-a;0;a)=-a(1;0;1) $
$\overrightarrow{SC}=(-a;-a;a) =-a(1;1;-1)$
$\Rightarrow  $ Phương trình tham số $SB:\left\{ \begin{array}{l} x=a+t\\ y=0\\z=-t \end{array} \right.  (t\in R)$
$H\in SB\Rightarrow  H(a+t;0;-t)$
$AH\bot SB\Leftrightarrow  \overrightarrow{AH}.\overrightarrow{SB}=0\Leftrightarrow  (a+t;0;-t)(1;0;-1)=0  $
$\Rightarrow  t=-\frac{a}{2}\Rightarrow  H(\frac{a}{2};0;\frac{a}{2}  ) $
phương trình tham số $SC:\left\{ \begin{array}{l} x=t\\ y=t\\z=a-t \end{array} \right. $
$\Rightarrow  K(t;t;a-t).\overrightarrow{AH}.\overrightarrow{SC}=0 \Leftrightarrow  (t;t;a-t)(1;1;-1)  $
$K(\frac{a}{3};\frac{a}{3};\frac{2a}{3}   )\Rightarrow  \overrightarrow{HK}=(-\frac{a}{6};\frac{a}{3};\frac{a}{6}   )=-\frac{a}{6}(1;-2;-1)  $
$\overrightarrow{HK}.\overrightarrow{SC}=\frac{a^2}{6}(1;-2;-1)(1;1;-1)=0   $
Vậy $HK\bot SC$

b) Phương trình $HK:\left\{ \begin{array}{l} x=\frac{a}{2}+t \\ y=-2t\\z==\frac{a}{2}-t  \end{array} \right. $
Phương trình $(ABC):z=0.$ Ta có: $I=HK\cap (ABC)\Rightarrow  \frac{a}{2}-t=0 $
$t=\frac{a}{2}\Rightarrow  I(a;-a;0)\Rightarrow \left\{ \begin{array}{l} x_I+x_C=2a=2x_B\\ y_I+y_C=0=2y_B\\z_I+z_C=0=2z_B \end{array} \right.  $
Vậy $B$ là trung điểm của $CI$

c) Ta có $\left\{ \begin{array}{l} SC\bot AK (gt)\\ SC\bot HK (cmt)\end{array} \right. \Rightarrow  SC\bot (AHK)$
$\overrightarrow{n}_{(AHK)}=(1;1;-1)\Rightarrow  sin \varphi=|cos(\overrightarrow{SB},\overrightarrow{SC}  )| $
$=|cos(\overrightarrow{n}"_{SB},\overrightarrow{n}_{(AHK)}  )|=\frac{|(1;0;-1)(1;1;-1)|}{\sqrt{(1^2+0^2+1^2)(1^2+1^2+1^2)} } =\frac{2}{\sqrt{6} } $

d) Gọi $J(x_0;y_0;z_0)$
$\Rightarrow  $ Phương trình mặt cầu $(S):x^2+y^2+z^2-2x_0x-2y_0y-2z_0z+d=0$
$A,B,C,S\in (S)\Rightarrow  d=0$ và $J(\frac{a}{2};\frac{a}{2} ;\frac{a}{2}  )$
$\Rightarrow  R=\sqrt{\frac{a^2}{4}+\frac{a^2}{4}; \frac{a^2}{4} } \frac{a\sqrt{3} }{2} $
Vậy $J$ là trung điểm $SC$ và  $R=\frac{a\sqrt{3} }{2} $
Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003