Cho phương trình : ${(x - 2)^{{\log _2}4(x - 2)}} = {2^\alpha }{(x - 2)^3}$ $1$. Giải phương trình với $\alpha = 2$ $2$. Xác định $\alpha $ để phương trình có $2$ nghiệm phân biệt ${x_1};{x_2}$ thỏa mãn : $\frac{5}{2} \le {x_1} \le 4\,\,\, ;\,\,$ và $\frac{5}{2} \le {x_2} \le 4\,\,$
|