Chứng minh các bất đẳng thức: 
$a/ a^{2}+b^{2}+c^{2}+d^{2} \geq \left( a+b   \right) \left(  c+d  \right) $
$b/ \frac{ a+b+c}{3} \leq \sqrt{ \frac{a^{2}+b^{2}+c^{2} }{3}}$
$c/ \sqrt{ a^{2}+b^{2}}+ \sqrt{ c^{2}+d^{2}} \geq \sqrt{ \left(  a+c  \right)^{2} + \left(b+d    \right)^{2} }$
d/ $a^{2}+b^{2}+c^{2}+3 \geq 2 \left(   a+b+c \right) $
e/ $\frac{ |a+b|}{1+|a+b|| } \leq \frac{ |a|+|b|}{1+|a|+|b|}$
$a/ a^{2}+b^{2}+c^{2}+d^{2} \geq \left( a+b   \right) \left(  c+d  \right) $
VP$= \left(  a+b  \right) \left( c+d   \right) = a^{2}+b^{2}+c^{2}+d^{2}-ac-bc-bd$
$=\frac{ 1}{2} \left(  a^{2} + c^{2} -2ac  \right) + \frac{ 1}{2} \left( a^{2} + d^{2} -2ad   \right)  +\frac{ 1}{2} \left( b^{2} + c^{2} -2bc   \right) $
$+ \frac{ 1}{2} \left( b^{2} +d^{2} -2bd   \right) $
$= \frac{ 1}{2} \left( a-c   \right)^{2} + \frac{ 1}{2} \left( a-d   \right)^{2} + \frac{ 1}{2} \left(  b-c  \right)^{2} + \frac{ 1}{2} \left(  b-d  \right)^{2} \geq 0 $
$\Rightarrow  a^{2}+b^{2}+c^{2}+d^{2} \geq \left( a+b   \right) \left( c+d   \right) $
Có đẳng thức khi $a=b=c=d$

$b/ \frac{ a+b+c}{3} \leq \sqrt{ \frac{a^{2}+b^{2}+c^{2} }{3}}$
$2ab \leq a^{2}+b^{2} $
$2ac \leq a^{2}+ c^{2} $
$2bc \leq b^{2} + c^{2} $
$a^{2} + b^{2} +c^{2} = a^{2} +b^{2} +c^{2} $
$\Leftrightarrow \left( a+b+c   \right)^{2}  \leq 3 \left(  a^{2} +b^{2} +c^{2}   \right) $
$\left( \frac{a+b+c }{3}   \right)^{2} \leq \frac{ a^{2} +b^{2} +c^{2} }{3} \Leftrightarrow \frac{ a+b+c}{3} \leq \sqrt{ \frac{ a^{2}+b^{2}+c^{2} }{3}} $
Có đẳng thức khi $a=b=c$

$c/ \sqrt{ a^{2}+b^{2}}+ \sqrt{ c^{2}+d^{2}} \geq \sqrt{ \left(  a+c  \right)^{2} + \left(b+d    \right)^{2} }$
Xuất phát từ $a^{2}.d^{2} +b^{2} c^{2}  \geq 2abc $
$a^{2}+d^{2} +b^{2} +c^{2} \geq 2abcd$
$+$
$a^{2} c^{2} +b^{2} d^{2} = a^{2} c^{2} + b^{2} d^{2} $
$\Rightarrow c^{2} \left( a^{2} +b^{2}    \right) + d^{2} \left( a^{2} +b^{2}    \right)  \geq \left( ac+bd   \right)^{2} $
$\Leftrightarrow \left(  a^{2}+b^{2}   \right) \left(  c^{2} +d^{2}   \right) \geq \left( ac+bd   \right)^{2} \Leftrightarrow 2 \sqrt{ \left( a^{2} +b^{2}    \right) \left(  c^{2} +d^{2}   \right) }$
$\geq 2 \left( ac +bd    \right) $
$\Leftrightarrow \left(  a^{2} + b^{2}   \right) + 2 \sqrt{ \left( a^{2} + b^{2}    \right) \left(  c^{2} +d^{2}   \right) }+ c^{2} + d^{2}$
$ \geq a^{2}b^{2} +c^{2} +d^{2} +2ac +2bd$
$\Leftrightarrow \left(  \sqrt{ a^{2} +b^{2} }+ \sqrt{ c^{2} +d^{2} }  \right)^{2}  \geq \left( a+c   \right)^{2} + \left( b+d   \right)^{2} $
$\Leftrightarrow \sqrt{ a^{2} +b^{2} } + \sqrt{ c^{2} +d^{2}} \geq \sqrt{ \left(a+c    \right)^{2} \left(  b+d  \right)^{2} } $

d/ $a^{2}+b^{2}+c^{2}+3 \geq 2 \left(   a+b+c \right) $
Xuất phát từ: $\left(   a-1 \right)^{2} + \left( b-1   \right)^{2} + \left( c-1   \right)^{2} \geq 0 \Leftrightarrow a^{2} + b^{2} + c^{2} +3 \geq 2 \left( a+b+c   \right) $
Có đẳng thức khi $a=b =c=1$

e/ $\frac{ |a+b|}{1+|a+b|| } \leq \frac{ |a|+|b|}{1+|a|+|b|}$

Từ: $|a+b| \leq |a|+|b|$
$+ |a+b| \left(  |a|+|b|  \right) = \left( |a|+|b|   \right) .|a+b|$
$\Rightarrow |a+b| \left(1+|a|+|b|    \right) \leq \left( |a|+|b|   \right) \left(1+|a+b|   \right)  $
$\Leftrightarrow \frac{ |a+b|}{1+|a+b|} \leq \frac{ |a|+|b|}{1+|a|+|b|}$

Thẻ

Lượt xem

613
Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003