a.Cho $a>0.f:[a,+\infty ] \to R$ liên tục thỏa mãn điều kiện:
$\int\limits_{a}^{t}f^{2}(x)dx \leq  \int\limits_{a}^{t}x^{2}dx  .\forall t \geq a$ 
Chứng  minh rằng: $\int\limits_{a}^{b}f(x)dx \geq  \int\limits_{a}^{b} xdx, \forall b \geq a $
b.  Chứng  minh rằng:
$\int\limits_{a}^{b}f(x)dx. \int\limits_{a}^{b}\frac{dx}{f(x)} \geq (b-a)^{2}$
Với: $f:[a,b] \to (0,+ \infty )$  liên tục.
a.Xét $t\geq a$ và $g(m)=\int\limits_{a}^{t}[mx-f(x)]^{2}dx,m \in R$
$\Rightarrow g(m)=(\int\limits_{a}^{t} x^{2}dx)m^{2}-2(\int\limits_{a}^{t} xf(x)dx)m+\int\limits_{a}^{t} [f(x)]^{2}dx \geq 0,\forall m \in R$
$\Rightarrow \Delta'=(\int\limits_{a}^{t} xf(x)dx)^{2}-(\int\limits_{a}^{t} x^{2}dx)(\int\limits_{a}^{t} [f(x)]^{2}dx ) \leq 0$
$\Rightarrow  (\int\limits_{a}^{t} xf(x)dx)^{2} \leq (\int\limits_{a}^{t} x^{2}dx)(\int\limits_{a}^{t} [f(x)]^{2}dx )\leq (\int\limits_{a}^{t} x^{2}dx)(\int\limits_{a}^{t} x^{2}dx)$
(Do giả thiết: $\int\limits_{a}^{t} [f(x)]^{2}dx\leq \int\limits_{a}^{t} x^{2}dx$)
$\Rightarrow \int\limits_{a}^{t} xf(x)dx\leq \int\limits_{a}^{t} x^{2}dx$
$\Rightarrow F(t)=\int\limits_{a}^{t}x[x-f(x)]dx \geq 0$
$\Rightarrow F'(t)=t[t-f(t)]$
Xét: $\int\limits_{a}^{b}[x-f(x)]dx=\int\limits_{a}^{b}\frac{1}{x}[x(x-f(x))]dx$
$=\int\limits_{a}^{b}\frac{1}{x}F'(x)dx,\forall b \geq a$
Đặt: $\begin{cases}u=\frac{1}{x} \\ dv=F'(x)dx \end{cases}$
$\Rightarrow \begin{cases}du=-\frac{dx}{x^{2}} \\ v=F(x) \end{cases}$
$\Rightarrow \int\limits_{a}^{b}[x-f(x)]dx=[\frac{1}{x}F(x)]_{a}^{b}+\int\limits_{a}^{b}\frac{F(x)}{x^{2}}dx$
$=\frac{1}{b}F(b)-\frac{1}{a}F(a)+\int\limits_{a}^{b}\frac{F(x)}{x^{2}}dx$
$=\frac{1}{b}F(b)+\int\limits_{a}^{b}\frac{F(x)}{x^{2}}dx\geq 0$
(vì $F(a)=0$)
(vì $F(b),F(x) \geq 0$)
$\Rightarrow \int\limits_{a}^{b}[x-f(x)]dx \geq 0$
$\Rightarrow \int\limits_{a}^{b}f(x)dx \leq  \int\limits_{a}^{b} xdx$
b.Ta có: $\int\limits_{a}^{b}[t\sqrt{f(x)}-\frac{1}{\sqrt{f(x)}}]^{2}dx \geq 0,\forall t\in R$
$\Rightarrow\int\limits_{a}^{b}[t^{2}f(x)-2t+\frac{1}{f(x)}]dx \geq 0,\forall t\in R$
$\Rightarrow (\int\limits_{a}^{b}f(x)dx)t^{2}-2(b-a)t+\int\limits_{a}^{b}\frac{dx}{f(x)}\geq 0,\forall t\in R$
$\Rightarrow \Delta'=(b-a)^{2}-(\int\limits_{a}^{b}f(x)dx)(\int\limits_{a}^{b}\frac{dx}{f(x)})\leq 0$
$\Rightarrow (\int\limits_{a}^{b}f(x)dx)(\int\limits_{a}^{b}\frac{dx}{f(x)}) \geq (b-a)^{2}$
$\Rightarrow$ (ĐPCM)

Thẻ

Lượt xem

722
Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003