Định m để phương trình sau có bốn nghiệm phân biệt:
\( x^{2}+x=m|2x-2|\)
\( x^{2}+x=m|2x-2|\)
\( \Leftrightarrow \left[ \begin{array}{l}x^{2}+x = 2mx-2m, x\geq 1 \\ x^{2}+x = -2mx+2m, x<1 \end{array} \right.\Leftrightarrow \left[ \begin{array}{l}x^{2}-\left(2m-1\right)x+2m=0, x\geq1 \\ x^{2}-\left(2m-1\right)x+2m=0, x<1 \end{array} \right.\)
+/ phương trình \( x^{2}-\left(2m-1\right)x+2m=0\) có $\Delta = 4m^{2}-4m+1-8m=4m^{2}-12m+1$

Với $\Delta >0\Leftrightarrow  m<\frac{3}{2}-\sqrt{2}$ hay $m>\frac{3}{2}+\sqrt{2}$, phương trình có hai nghiệm

\( x_{1}=\frac{\left(2m-1\right)-\sqrt{4m^{2}-12m+1}}{2}, x_{2}=\frac{\left(2m-1\right)+\sqrt{4m^{2}-12m+1}}{2}\)
 Cần \( \frac{\left(2m-1\right)-\sqrt{4m^{2}-12m+1}}{2}\geq 1 \Leftrightarrow \left(2m-1\right)-\sqrt{4m^{2}-12m+1}\geq 2\)
\(\Leftrightarrow 2m-3 \geq \sqrt{4m^{2}-12m+1}\Leftrightarrow \begin{cases}x >\frac{3}{2}\\ 4m^{2}-12m+9\geq 4m^{2}-12m+1 \end{cases} \Leftrightarrow m\geq \frac{3}{2} \)
phối hợp với \( \Delta>0 (1)\)
+/ phương trình \( x^{2}+\left(2m-1\right)x-2m=0\) có $\Delta = 4m^{2}+4m+1+8m=4m^{2}+12m+1$

Với  $\Delta >0 \Leftrightarrow  m<\frac{-3}{2}-\sqrt{2}$ hay $m>\frac{-3}{2}+\sqrt{2}$, phương trình có hai nghiệm

\( x_{3}=\frac{-\left(2m+1\right)-\sqrt{4m^{2}+12m+1}}{2}, x_{4}=\frac{-\left(2m+1\right)+\sqrt{4m^{2}+12m+1}}{2}\)

  Cần \( \frac{-\left(2m+1\right)+ \sqrt{4m^{2}+12m+1}}{2}\leq 1 \Leftrightarrow -\left(2m-1\right)+\sqrt{4m^{2}-12m+1}\leq 2\)
\(\Leftrightarrow 2m+3 \geq \sqrt{4m^{2}+12m+1}\)
\(\Leftrightarrow \begin{cases}x >\frac{-3}{2}\\ 4m^{2}+12m+1 \leq 4m^{2}+12m+9 \end{cases} m>m>\frac{-3}{2}\)
phối hợp với \( \Delta>0 (2)\)
\( \frac{\left(2m-1\right) \pm \sqrt{4m^{2}-12m+1}}{2} \neq \frac{-\left(2m+1\right) \pm \sqrt{4m^{2}+12m+1}}{2}\)
 \( 4m \pm \sqrt{4m^{2}-12m+1} \neq \sqrt{4m^{2}+12m+1}\)
 \( 16m^{2}+4m^{2}-12m+1 \pm 8m\sqrt{4m^{2}-12m+1} \neq 4m^{2}+12m+1\)
 \(16m^{2} -24m \neq 8m\sqrt{4m^{2}-12m+1}\)
 \( 2m^{2}-3m \neq \pm \sqrt{4m^{2}-12m+1}\)
\( 4m^{4}+9m^{2}-12m^{3} \neq 9m^{4}-12m^{3}+m^{2}\)
 \( m\neq 0 (3)\)
 Hợp \( (1), (2), \) giao với \((3)\) được \(m>\frac{-3}{2}+\sqrt{2}\) và \(m\neq 0\)

Thẻ

Lượt xem

733
Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003