7
phiếu
3đáp án
1K lượt xem

Chuyên mục: Kể chuyện đêm khuya, mỗi ngày 1 câu chuyện

Cho $x,y,z\geq 0$ thỏa: $x^2+y^2+z^2=3$.CMR:$\frac{1}{x^3+2}+\frac{1}{y^3+2}+\frac{1}{z^3+2}\geq1.$
8
phiếu
1đáp án
760 lượt xem

bđt

Cho $a,b,c$ dương thỏa mãn $6a+3b+2c=abc$ tìm $Max$ $B=\frac{1}{\sqrt{a^{2}+1}}+ \frac{2}{\sqrt{b^{2}+4}} +\frac{3}{\sqrt{c^{2}+9}}$
15
phiếu
2đáp án
1K lượt xem

BĐT hay nè

a,b,c là những số thực dương.CMR$\sqrt[3]{\frac{(a+b)(b+c)(c+a)}{abc}}\geq \frac{4}{3}(\frac{a^{2}}{a^{2}+bc}+\frac{b^{2}}{b^{2}+ca}+\frac{c^{2}}{c^{2}+ab})$
10
phiếu
1đáp án
1K lượt xem

BĐT

cho 3 số thực a,b,c dương thỏa mãn a+b+c=3abc.CMR:$\frac{bc}{a^{3}(2b+c)}+\frac{ca}{b^{3}(2c+a)}+\frac{ab}{c^{3}(2a+b)}\geq 1$
4
phiếu
1đáp án
850 lượt xem

help me điểm rơi cosi nha

Cho $a \ge 6$ CMR; $a^2+\frac{18}{\sqrt{a}}\geq 36+3\sqrt{6}$
10
phiếu
3đáp án
2K lượt xem

BĐT hay và khó.

Cho $3$ số $a,b,c$ dương thỏa mãn điều kiện $a+b+c=3$.CMR:$\frac{1}{a^{2}+b^{2}+2}+\frac{1}{b^{2}+c^{2}+2}+\frac{1}{c^{2}+a^{2}+2}\leq \frac{3}{4}$
7
phiếu
1đáp án
918 lượt xem

Bất đẳng thức :D helpp

Cho $3$ số thực dương $a,b,c$ thỏa mãn $a+b+c=3$. CMR:$\frac{1}{a^{2}+b+c}+\frac{1}{b^{2}+c+a}+\frac{1}{c^{2}+a+b}\leq 1$
10
phiếu
2đáp án
1K lượt xem

Bất đẳng thức , NGU bạn sẽ làm được ^_^

Với a,b,c là 3 cạnh của một tam giác, CMR : $\frac{a}{2b+2c-a} +\frac{b}{2c+2a-b}+\frac{c}{2a+2b-c} \geq 1$
8
phiếu
1đáp án
897 lượt xem

cần một bộ não nhiều nếp nhăn!!!!!!!!!!!

Biết vs $a,b,c$ là $3$ cạnh của tam giác.Chứng minh rằng...
12
phiếu
1đáp án
1K lượt xem

Chuyên mục kể chuyện đêm khuya: Mỗi ngày 1 câu hỏi

Cho $0<x,y,z<1$.Thỏa mãn:$xy+yz+zx=1$.Tìm $Min$$S=\frac{x^2(1-2y)}{y}+\frac{y^2(1-2z)}{z}+\frac{z^2(1-2x)}{x}$.
12
phiếu
1đáp án
762 lượt xem

bđt

Cho các số thực $x,y$ có tổng khác $0$.Tìm $Min$: $P=8x^{2}+13y^{2}+\left(\frac{xy-6}{x+y}\right)^{2}$
9
phiếu
1đáp án
1K lượt xem

BĐT. Tưởng dễ lại thành khó

Cho $3$ số thực $x,y,z$ dương thỏa mãn $xy+yz+xz\geq $2.Tìm GTNN của:$A=4x^{2}+4y^{2}+z^{2}$
5
phiếu
1đáp án
1K lượt xem

Ngon nè =))

CM với mọi số thực dương $a_{1},a_{2},...,a_{n}$ ta luôn có :$(a_{1}+a_{2}+...+a_{n})( \frac{1}{a_{1}}+\frac{1}{a_{2}}+...+ \frac{1}{a_{n}}) \geq n^{2}$
2
phiếu
2đáp án
1K lượt xem

Nhào zo mấy bạn ơi

\forall x \in R. Chứng minh (x-1)(x-2)(x-3)(x-4) \geq -1
32
phiếu
4đáp án
9K lượt xem

Cho $3$ số thực $a,b,c$ dương thỏa mãn $abc+a+c=b$. Tìm GTLN của: $P=\frac{2}{1+a^{2}}-\frac{2}{1+b^{2}}+\frac{3}{1+c^{2}}$

Cho $3$ số thực $a,b,c$ dương thỏa mãn $abc+a+c=b$. Tìm GTLN của: $P=\frac{2}{1+a^{2}}-\frac{2}{1+b^{2}}+\frac{3}{1+c^{2}}$
14
phiếu
3đáp án
2K lượt xem

Đzai lỗi tại ai -__-******

Cho $a,b,c$ là độ dài $3$ cạnh của tam giác .Cmr $ab(a+b-2c) +bc(b+c-2a)+ca(c+a-2b)\geq0$.
13
phiếu
1đáp án
1K lượt xem

bđt

Cho $x,y,z$ là các số thực dương thỏa mãn $x^{2} +y^{2}+ z^{2}=2 $ Tìm GTNN của$P=\frac{xy+2}{\sqrt{z^{2}+2}} +\frac{yz+2}{\sqrt{x^{2}+2}} +\frac{zx+2}{\sqrt{y^{2}+2}}+ \frac{54}{(\sqrt{x} +\sqrt{y}+ \sqrt{z})^{2}}$
6
phiếu
0đáp án
413 lượt xem

Nhân ngày mùng 8/3

Nhân ngày mùng 8/3, chúc tất cả các chị em trong HTN luôn mạnh khỏe, vui vẻ, ngày càng xinh đẹp và học giỏi.P/s: Hơi ngoài lề tí nhé :D
8
phiếu
1đáp án
662 lượt xem

bđt

Cho $0<x,y,z\leq 1$ thỏa mãn $x+y+z=2$.Tìm $Min$ $A= \frac{(x-1)^{2}}{z}+ \frac{(y-1)^{2}}{x}+ \frac{(z-1)^{2}}{y}$
6
phiếu
1đáp án
902 lượt xem

Tìm $Min$ $D= \frac{x}{\sqrt{y+z -4}} +\frac{y}{\sqrt{z+x -4}}+ \frac{z}{\sqrt{x+y -4}}$

Cho $x,y,z$ là những số thực $>2.$ Tìm $Min$ $D= \frac{x}{\sqrt{y+z -4}} +\frac{y}{\sqrt{z+x -4}}+ \frac{z}{\sqrt{x+y -4}}$
7
phiếu
0đáp án
617 lượt xem

BĐT nè nếu hay thì vote cho mình nha

cho các số a,b,c dương thỏa mãn $\left\{ \begin{array}{l} a,b \geq c\\ \sqrt{a-c} + \sqrt{b-c} = \sqrt{a+b}\end{array} \right.$Tìm giá trị nhỏ...
10
phiếu
1đáp án
1K lượt xem

Tiêu đề: Hãy vote up như chưa bao giờ được vote :))

Cho $a,b$ là $2$ số thực dương thỏa mãn:$a+b+4ab=4(a^2+b^2)$.Tìm $Max$ $A=20(a^3+b^3)-6(a^2+b^2)+2013$.
3
phiếu
1đáp án
985 lượt xem

toán bất đẳng thức

anh chị ơi giúp e bài này ạ: Cho $a,b,c \leq 0$.CMR: $3(1-a+a^2)(1-b+b^2)(1-c+c^2)> 1+abc+a^2b^2c^2$ bài này thuộc phương pháp sử dụng dấu...
6
phiếu
1đáp án
986 lượt xem

Sáng tạo Bất đẳng thức ( VD 1.1.4)

Giả sử $a_{1},a_{2},...,a_{n} $là các số thực dương sao cho : $a_{1}+a_{2}+...+a_{n}=n$Chứng minh với mọi số nguyên dương ta có bất đẳng thức : ...
6
phiếu
0đáp án
341 lượt xem

P= $3(\frac{x}{x^{2} +2} +\frac{y}{y^{2} +2} -\frac{z^{2}}{4} )+\frac{(xy-6)^{2} -4(x^{2} +y^{2}+8)}{2(2z^{2}+1)(x+y)^{2}}$

Cho các số thực không âm $x,y,z$ thỏa mãn điều kiện $xy-2(x+y)z -2=0$ tìm max P= $3(\frac{x}{x^{2} +2} +\frac{y}{y^{2} +2} -\frac{z^{2}}{4} )+\frac{(xy-6)^{2} -4(x^{2} +y^{2}+8)}{2(2z^{2}+1)(x+y)^{2}}$
6
phiếu
1đáp án
905 lượt xem

Bất đẳng thức khó!

Cho $x,y,z$ là các số không âm thoả mãn: $x+y+z=1$Tìm GTLN của $P=(x+2y+3z)(6x+3y+2z)$
5
phiếu
1đáp án
721 lượt xem

Giúp

Cho a,b,c là các số thực dương thỏa mãn abc$\geq 1$ Chứng minh rằng : $\sum_{}^{} \frac{a^5-a^2}{a^5+b^2+c^2}\geq 0$
5
phiếu
1đáp án
1K lượt xem

cho ba số dương a,b,c thay đổi và thỏa mãn $a+b+c=2$. tìm GTLN của biểu thức $S=\sqrt{\frac{ab}{ab+2c}}+\sqrt{\frac{bc}{bc+2a}}+\sqrt{\frac{ca}{ca+2b}}$

cho ba số dương a,b,c thay đổi và thỏa mãn $a+b+c=2$. tìm GTLN của biểu thức$S=\sqrt{\frac{ab}{ab+2c}}+\sqrt{\frac{bc}{bc+2a}}+\sqrt{\frac{ca}{ca+2b}}$
5
phiếu
2đáp án
1K lượt xem

Mọi người làm nhanh hộ em

Cho $a, b, c > 0$ thỏa mãn $a^{4} + b^{4} + c^{4} = 3$ Chứng minh rằng:$$\frac{1}{4-ab}+\frac{1}{4-bc}+\frac{1}{4-ca} \leq 1$$(Moldova TST)
6
phiếu
2đáp án
1K lượt xem

Cho $x,y>0$ thỏa mãn: $\frac{x+y}{2}+\sqrt{\frac{x^2+y^2}{2}}=2\sqrt[3]{\frac{x^3+y^3}{2}}$. CMR: $x=y$

Cho $x,y>0$ thỏa mãn: $\frac{x+y}{2}+\sqrt{\frac{x^2+y^2}{2}}=2\sqrt[3]{\frac{x^3+y^3}{2}}$.CMR: $x=y$

Trang trước1...2425262728...74Trang sau 153050mỗi trang
Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003