Cho tam giác  $ABC$,  $M$  là điểm định bởi  $\overrightarrow{BM}=\overrightarrow{BC}-2 \overrightarrow{AB}   ,N$  là điểm định bởi: $\overrightarrow{CN}=x\overrightarrow{AC}-\overrightarrow{BC}   $
a) Xác định $x$  để  $A,M,N$  thẳng hàng.
b) Xác định  $x$  để  $MN$  qua điểm giữa  $I$ của $BC$.  Tính tỉ số  $\frac{IM}{IN}$
a) Ta có:
$\overrightarrow{BM}=\overrightarrow{BC}-2 \overrightarrow{AB}    \Leftrightarrow    2\overrightarrow{BA}+\overrightarrow{BC}-\overrightarrow{BM}=\overrightarrow{0}                                                   (1)$
$\overrightarrow{CN}= x \overrightarrow{AC}- \overrightarrow{BC}      \Rightarrow     x \overrightarrow{CA}+\overrightarrow{CN}-\overrightarrow{CB} =\overrightarrow{0}                                                (2)$
Từ  $(1)   \Rightarrow    2 \overrightarrow{AB}=\overrightarrow{BC}-\overrightarrow{BM}=(\overrightarrow{BA}+\overrightarrow{AC}  )-(\overrightarrow{BA}+\overrightarrow{AM}  )   $
$\Rightarrow     2 \overrightarrow{AB}=\overrightarrow{AC}-\overrightarrow{AM}    \Leftrightarrow     \overrightarrow{AM}=\overrightarrow{AC}-2 \overrightarrow{AB}                                                 (3)$
Từ  $(2)   \Rightarrow    x \overrightarrow{AC}=\overrightarrow{CN}-\overrightarrow{CB}=(\overrightarrow{CA}+\overrightarrow{AN}  )-(\overrightarrow{CA}+\overrightarrow{AB}  )   $
                           $x \overrightarrow{AC}=\overrightarrow{AN}-\overrightarrow{AB}      \Rightarrow      \overrightarrow{AN}= x \overrightarrow{AC}+\overrightarrow{AB}                    (4)$
Từ  $(3),(4)$    và  $A,M,N$  thẳng hàng   $\Leftrightarrow     \overrightarrow{AM}, \overrightarrow{AN}  $  cùng phương
$\Rightarrow      \overrightarrow{AM}=k\overrightarrow{AN}  $  chọn  $k=-2$  thì  $\overrightarrow{AM}=-2 \overrightarrow{AN}  $
$\Rightarrow      \overrightarrow{AM}+2 \overrightarrow{AN}=0     \Leftrightarrow      (\overrightarrow{AC}-2 \overrightarrow{AB}  )+2(x \overrightarrow{AC} +\overrightarrow{AB} )=0$
$\Leftrightarrow    (2x+1)\overrightarrow{AC}=0      \Leftrightarrow       2x+1=0         \Leftrightarrow       x=-\frac{1}{2} $
Vậy khi  $x=-\frac{1}{2} $  thì  $A,M,N$  thẳng hàng.

b) Ta có:
Từ $(1)    \Rightarrow      2(\overrightarrow{BI}+\overrightarrow{IA})+(\overrightarrow{BI}+\overrightarrow{IC})-(\overrightarrow{BI}+\overrightarrow{IM})=\overrightarrow{0} $
                  $\Rightarrow     2 \overrightarrow{IB}=2 \overrightarrow{IA}+\overrightarrow{IC}-\overrightarrow{IM}     \Rightarrow      \overrightarrow{IM}=2 \overrightarrow{IA}+3 \overrightarrow{IC} $
Từ  $(2)    \Rightarrow     x(\overrightarrow{CI}+\overrightarrow{IA})+(\overrightarrow{CI}+\overrightarrow{IN}  )-(\overrightarrow{CI}+\overrightarrow{IB}  )=\overrightarrow{0} $
                $\Rightarrow    x \overrightarrow{IC}=x \overrightarrow{IA}+\overrightarrow{IN}-\overrightarrow{IB}      \Rightarrow      \overrightarrow{IN}=-x \overrightarrow{IA}+(x-1)\overrightarrow{IC}   $
Để  $M,N,I$  thẳng hàng   $\Leftrightarrow   \overrightarrow{IM}, \overrightarrow{IN}  $  cùng phương
$\Leftrightarrow     \overrightarrow{IM}=k\overrightarrow{IN}     \Leftrightarrow      2(x-1)+3x=0     \Leftrightarrow     x=\frac{2}{5} $    (chọn  $k=-5$)
Vậy khi  $x=\frac{2}{5} $  ta có: 
$\overrightarrow{IM}=2 \overrightarrow{IA}+3 \overrightarrow{IC};  \overrightarrow{IN}=-\frac{2}{5}\overrightarrow{IA}-\frac{3}{5}\overrightarrow{IC}  $
$\Rightarrow      \overrightarrow{IM}=-5 \overrightarrow{IN}      \Leftrightarrow     \frac{IM}{IN}=-5. $

Thẻ

× 712

Lượt xem

685
Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003