Tính các giới hạn:
a) $\mathop {\lim }\limits_{x \to 0}\frac{(1+x)(1+2x)(1+3x)...(1+nx)-1}{x}  $                           
b) $\mathop {\lim }\limits_{x \to 1}\frac{(1-\sqrt[]{x})(1-\sqrt[3]{x} )...(1-\sqrt[n]{x} ) }{(1-x)^{n-1}}  $
c) $\mathop {\lim }\limits_{x \to 0}\frac{\sqrt[n]{1+P(x)}-1 }{x}  $, trong đó $P(x)$  là đa thức  $a_1x+a_2x^2+...+a_n.x^n$
d) $\mathop {\lim }\limits_{x \to 0}\frac{\sqrt[]{\cos x}-\sqrt[3]{\cos x}}{\sin ^2 x}  $                                                   
e) $\mathop {\lim }\limits_{x \to -\sqrt[]{3} }\frac{x^3+3\sqrt[]{3} }{3-x^2}  $
a) Ta chứng minh bằng quy nạp công thức:
      $\frac{(1+x)(1+2x)(1+3x)...(1+nx)-1}{x} = 1+2(1+x)+3(1+x)(1+2x)+...$
                                                               $...+  n(1+x)(1+2x)...(1+(n-1)x)     (1)$
-  Với $n=2$, $(1)$ đúng.
-  Giả sử $(1)$ đúng với $n$, ta có: 
      $\frac{(1+x)(1+2x)(1+3x)...(1+(n+1)x)-1}{x} \\= [1+2(1+x)+...+  n(1+x)(1+2x)...(1+(n-1)x)][1+(n+1)x]\\=1+2(1+x)+...+  (n+1)(1+x)(1+2x)...(1+nx)  $
Nên $(1)$ cũng đúng với $n+1$, vậy $(1)$ đúng với mọi $n$
       Suy ra ĐS:  $1+2+3+...+n=\frac{n(n+1)}{2} $

b) Đặt $1-x=y$ và $A$  là giới hạn cần tìm.
     $A=\mathop {\lim }\limits_{y\to 0}\frac{1-\sqrt[]{1-y} }{y} .\mathop {\lim }\limits_{y \to 0}\frac{1-\sqrt[3]{1-y} }{y} ...  \mathop {\lim }\limits_{y \to 0}\frac{1-\sqrt[n]{1-y} }{y}     $
Ta có     $\mathop {\lim }\limits_{y \to 0}\frac{1-\sqrt[k]{1-y} }{y}=\frac{1}{k} \forall k=1,2,...,n.         $  Do đó   $A=\frac{1}{n!} $

c)  $ \mathop {\lim }\limits_{x \to 0} \frac{\sqrt[n]{1+P(x)}-1 }{x}=\mathop {\lim }\limits_{x \to 0}\frac{\sqrt[n]{1+P(x)}-1}{P(x)}.\frac{P(x)}{x}    $
     Đặt $P(x)=y: \mathop {\lim }\limits_{x \to 0} \frac{\sqrt[n]{1+y}-1 }{y}. \mathop {\lim }\limits_{x \to 0}

(a_1+a_2x+...+a_nx^{n-1})=\frac{a_1}{n}$

d) Đặt $\cos x =t^6$, ta có:
              $\mathop {\lim }\limits_ {x \to 0}\frac{\sqrt[]{\cos x}-\sqrt[3]{\cos x}  }{\sin ^2 x}=\mathop {\lim }\limits_{t \to 1} \frac{t^3-t^2}{1-t^{12}}=-\mathop {\lim }\limits_{t \to 1} \frac{1-t}{1-t^12}      $  $=-\mathop {\lim }\limits_{t \to 1} \frac{1-t}{(1-t)(1+t+...+t^{11})}  =-\frac{1}{12} $

e)       $\mathop {\lim }\limits_{x \to -\sqrt[]{3} }\frac{x^3+3\sqrt[]{3} }{3-x^2}       = \mathop {\lim }\limits_{x \to -\sqrt[]{3} }\frac{(x+\sqrt[]{3} )(x^2-x\sqrt[]{3}+3 )}{(\sqrt[]{3}+x )(\sqrt[]{3}-x )}  =\frac{3\sqrt[]{3} }{2}    $

Thẻ

Lượt xem

1668
Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003