Hình chóp $S.ABCD$ có đáy $ABCD$ là hình thoi với các đường chéo $AC=4a, BD=2a$, chúng cắt nhau tại $O$. Đường cao hình chóp $SO=h$. Mặt phẳng $(\alpha )$ qua $A$, vuông góc với $SC$ và cắt $SB, SC, SD$ lần lượt tại $B',C',D'$
a) Xác định $h$ để $\Delta B'C'D'$ đều
b) Tính bán kính $r$ của mặt cầu nội tiếp hình chóp theo $a$ và $h$

Chọn hệ trục tọa độ $Oxyz$ sao cho $O(0;0;0), A(2a;0;0), B(0;a;0), S(0;0;h)\Rightarrow  C(-2a;0;0), D(0;-a;0)$
a) Ta có: $\left\{ \begin{array}{l} SC\bot (\alpha )\\ SC\bot BD(BD\bot SAC) \end{array} \right. \Rightarrow  BD//(\alpha )\Rightarrow  B'D'//BD$
$\overrightarrow{SC}=(-2;0;-h) $
$\Rightarrow  $ phương trình tham số $SC:\left\{ \begin{array}{l} x=-2a+2at\\ y=0\\z=ht \end{array} \right. $
Phương trình $(\alpha ):2a(x-2a)+hz=0\Leftrightarrow  2ax+hz-4a^2=0$
$\Rightarrow  C'(\frac{8a^3-2ah^2}{4a^2+h^2};0;\frac{8a^2h}{4a^2+h^2}  )$
$\overrightarrow{SB}=(0;a;-h) \Rightarrow  $ Phương trình tham số $SB:\left\{ \begin{array}{l} x=0\\ y=a+at\\z=-ht \end{array} \right. $
$\Rightarrow  B'(0;\frac{ah^2-4a^3}{h^2};\frac{4a^2}{h}  )$
$D'B'//DB\Rightarrow  I$ là trung điểm $D'B'$
Mặt khác, $D'B'\bot (SAC)(do DB\bot (SAC))$ nên $D'B'\bot AC'\Rightarrow  \Delta B'C'D'$ cân tại $C'\Rightarrow  \Delta IB'C'$ là nửa tam giác đều
Để $\Delta B'C'D'$ đều thì $IC'=IB'\sqrt{3} $
$\begin{array}{l}
 \Leftrightarrow {\left( {\frac{{8{a^3} - 2a{h^2}}}{{4{a^2} + {h^2}}}} \right)^2} + \left( {\frac{{4{a^2}{h^2} - 16{a^4}}}{{{h^2}(4{a^2} + {h^2})}}} \right) = 3{\left( {\frac{{4{a^3} - a{h^2}}}{{{h^2}}}} \right)^2}\\
 \Leftrightarrow {\left( {\frac{{4{a^3} - a{h^2}}}{{4{a^2} + {h^2}}}} \right)^2} + \left( {4 + \frac{{16{a^2}}}{{{h^2}}}} \right) = 3{\left( {\frac{{4{a^3} - a{h^2}}}{{{h^2}}}} \right)^2} \Leftrightarrow \frac{4}{{4{a^2} + {h^2}}} = \frac{3}{{{h^2}}}\\
 \Leftrightarrow h = 2a\sqrt 3
\end{array}$

b) Ta có:
$\begin{array}{l}
{V_{S.ABCD}} = \frac{1}{3}r.{S_{tp}}\\
{S_{\Delta SAB}} = \frac{1}{2}|{\rm{[}}\overrightarrow {SA} {\rm{,}}\overrightarrow {SB} {\rm{]}}| = \frac{1}{2}|{\rm{[(2a;0; - h),(0;a; - h)]}}|\\
             = \frac{1}{2}|(ah;2ah;2{a^2})| = \frac{a}{2}\sqrt {4{a^2} + 5{h^2}}
\end{array}$
Mà $\Delta SAB=\Delta SBC=\Delta SCD=\Delta SDA$, nên:
$\begin{array}{l}
{S_{tp}} = 4{S_{\Delta SAB}} = 2a\sqrt {4{a^2} + 5{h^2}} \,\,;\,\,\,{S_{ABCD}} = \frac{1}{2}AC.BD = 4{a^2}\\
 \Rightarrow {S_{tp}} = 4{a^2} + 2a\sqrt {4{a^2} + 5{h^2}} \\
{V_{S.ABCD}} = \frac{1}{3}h.{S_{ABCD}} = \frac{{4{a^2}h}}{3} \Rightarrow r = \frac{{3V}}{{{S_{tp}}}} = \frac{{2ah}}{{2a + \sqrt {4{a^2} + 5{h^2}} }}
\end{array}$

Thẻ

Lượt xem

1695
Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003