Giải các hệ phương trình: a){x+3y5+y+z6=z2x+57+4z+53=z+13y+78+2z+13=y−1b){1x−1+1y−2+1z−3=11x−1+2y−2+4z−3=81x−1+3y−2+9z−3=27
c){1x+1y−1z=01x−1y+1z=10−1x+1y+1z=−6d){x−35=y+913=6z−173x+2y−3z=12.
e){x5=y7=z13x+2y+3z=174f){2x−73=3y+12=6z−173x+2y−z=61
g){x+y+z=−2y+z+t=4z+t+x=−3t+x+y=1
|