Dễ chứng minh:
cotA2+cotB2+cotC2=cotA2.cotB2.cotC2(1) Do đó:
12(tanA2+tanB2+tanC2+cotA2.cotB2.cotC2)
=12(tanA2+tanB2+tanC2+cotA2+cotB2+cotC2)=12(tanA2+cotA2+tanB2+cotB2+tanC2+cotC2)
=12(1cosA2sinA2+1cosB2sinB2+1cosC2sinC2)=12(2sinA+2sinB+2sinC)=1sinA+1sinB+1sinC
Chứng minh
(1):
cot(A2+B2)=cotA2cotB2−1cotA2+cotB2
⇔1cotC2=cotA2cotB2−1cotA2+cotB2
⇒ (1)