Cho hàm số $y = x^3 - 1$ và năm điểm $A(2;7), B(-2; -9), C(0; 1), D(1; 5), E(-2; 7)$. a) Chứng minh ba điểm $A, B, C$ thuộc đồ thị (H) của hàm số, còn hai điểm $D, E$ không thuộc (H). b) Chứng minh ba điểm $A, B, C$ thẳng hàng. c) Từ kết quả hai câu trên, ta nhận thấy ba điểm $A, B, C$ cùng thuộc (H) và chúng lại cùng nằm trên một đường thằng. Có thể kết luận đồ thị (H) của hàm số đã cho là một đường thẳng được không?
|