Cho phương trình
$(4-6m)\sin^3x+3(2m-1)\sin x+2(m-2)\sin^2x\cos x-(4m-3)\cos x=0$
a)    Giải phương trình với $m = 2$
b)    Tìm $m$ để phương trình có đúng một nghiệm $x \in [ {0;\frac{\pi }{4}} ]$
a) Với $m = 2$ ta có
        $8{\sin ^3}x - 9{\mathop{\rm s}\nolimits} {\rm{inx}} + 5c{\rm{osx}} = 0$
$\begin{array}{l}
 \Leftrightarrow 4{\mathop{\rm s}\nolimits} {\rm{inx}}\left( {2{\mathop{\rm s}\nolimits} {\rm{i}}{{\rm{n}}^2}{\rm{x}} - 1} \right) - 5\left( {{\mathop{\rm s}\nolimits} {\rm{inx}} - c{\rm{osx}}} \right) = 0\\
 \Leftrightarrow 4{\mathop{\rm s}\nolimits} {\rm{inx}}\left( {{\mathop{\rm s}\nolimits} {\rm{i}}{{\rm{n}}^2}{\rm{x}} - c{\rm{o}}{{\rm{s}}^2}{\rm{x}}} \right) - 5\left( {{\mathop{\rm s}\nolimits} {\rm{inx}} - c{\rm{osx}}} \right) = 0\\
 \Leftrightarrow \left( {{\mathop{\rm s}\nolimits} {\rm{inx}} - c{\rm{osx}}} \right)\left[ { - 4c{\rm{o}}{{\rm{s}}^2}x + 4\sin {\rm{x}}c{\rm{osx}} - 1} \right] = 0\\
 \Leftrightarrow \left( {{\mathop{\rm s}\nolimits} {\rm{inx}} - c{\rm{osx}}} \right)\left[ { - {{\left( {2c{\rm{osx}} - {\mathop{\rm s}\nolimits} {\rm{inx}}} \right)}^2} - \left( {1 - {{\sin }^2}x} \right)} \right] = 0\\
 \Leftrightarrow {\mathop{\rm s}\nolimits} {\rm{inx}} - c{\rm{osx}} = 0 \Leftrightarrow x = \frac{\pi }{4} + k\pi     \left( {k \in Z} \right)
\end{array}$   

b) Với $0 \le x \le \frac{\pi }{4}$ ta có $c{\rm{osx}} \ne 0$, chia hai vế phương trình đã cho cho $c{\rm{o}}{{\rm{s}}^3}x$
và do tổng của các hệ số bằng $0$ ta được
$\left( {tg{\rm{x - 1}}} \right)\left( {t{g^2}x - 2mtg{\rm{x}} + 4m - 3} \right) = 0$
$i){\rm{   tgx - 1 = 0}} \Leftrightarrow {\rm{tgx  =  0 }} \Rightarrow {\rm{x = }}\frac{\pi }{4} \in \left[ {0;\frac{\pi }{4}} \right]$
$ii)$ Do $i)$ta tìm $m$ để phương trình   (đặt $t = tg{\rm{x}}$)
${t^2} - 2mt + 4m - 3 = 0 \Leftrightarrow {t^2} - 3 = 2m\left({t - 2} \right)$
$ \Leftrightarrow f\left( t \right) = \frac{{{t^2} - 3}}{{t - 2}} = 2m$ không có nghiệm $t \in \left[ {0;1} \right)$
Ta có $f\left( t \right) = t + 2 + \frac{1}{{t - 2}},{f^'}\left( t \right) = 1 - \frac{1}{{{{\left( {t - 2} \right)}^2}}} \ge 0,t \in \left[ {0;1} \right)$
$ \Rightarrow f\left( t \right)$ đồng biến
$\Rightarrow \mathop {\min }\limits_{t \in \left[ {0;1} \right)} \left( t \right) = f\left( 0 \right) = \frac{3}{2}$ ; $\mathop {m{\rm{ax}}}\limits_{t \in \left[ {0;1} \right)} \left( t \right) = f\left( 2 \right) = 2$
Vậy $m$ phải tìm thỏa mãn $2m < \frac{3}{2}$ hoặc $2m \ge 2$ $ \Leftrightarrow m < \frac{3}{4}$ hoặc $m \ge 1$

Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003