Giải các phương trình sau:
$a) 3^{x+1} + 18.3^{-x}= 29$
$b) log_x\sqrt 5 +log_x5x – 2,25 = (log_x\sqrt 5 )^2$
$c) 9^{log_3{(1-2x)}}= 5x^2 – 5 $  
  
$ d) {{x}^{\frac{{{logx + 7}}}{{4}}}}{ = 1}{{0}^{{logx + 1}}}$
$a)$ Ta có $3^{x+1} + 18.3^{-x} = 29$ $ \Leftrightarrow {3}{.}{{3}^{x}}{  + }\frac{{{18}}}{{{{3}^{x}}}}{ = 29}       (*)$
Đặt $t = 3x > 0$
$(*)  \Leftrightarrow {3}{.t + }\frac{{{18}}}{{t}}{ = 29}
\Leftrightarrow {3}{{t}^{2}}{ - 29t + 18 = 0} \Leftrightarrow \left[
\begin{array}{l}
{t = }\frac{{2}}{{3}}{ > 0}\\
{t = 9 > 0}
\end{array} \right.$
* ${t = }\frac{{2}}{{3}} \Leftrightarrow {{3}^{x}}{ =
}\frac{{2}}{{3}} \Rightarrow {x =
lo}{{g}_{3}}\frac{{2}}{{3}}{ =
lo}{{g}_{3}}{2 - lo}{{g}_{3}}{3} \Leftrightarrow {x
= lo}{{g}_{3}}{2 - }$1
$*t =9  \Leftrightarrow {{3}^{x}}{ = }{{3}^{2}} \Leftrightarrow
{x = 2}$
$b) logx\sqrt 5 +log_x5x – 2,25 = (log_x\sqrt 5 )^2       (*)$
Điều kiện: $0 < x \neq 1$, đặt: $t = log_x5$
$(*)  \Leftrightarrow \frac{{1}}{{2}}{lo}{{g}_{x}}{5 +  lo}{{g}_{x}}{5 + lo}{{g}_{x}}{x -  }\frac{{9}}{{4}}{ = }{\left(  {\frac{{1}}{{2}}{lo}{{g}_{x}}{5}} \right)^{2}}$
   $ \Leftrightarrow \frac{1}{2}t+ t +1 - \frac{9}{4} = \frac{{1}}{{4}}{{t}^{2}}$
    $ \Leftrightarrow {{t}^{2}}{ - 6t + 5 = 0} \Leftrightarrow \left[
\begin{array}{l}
{t = 1}\\
{t = 5}
\end{array} \right.$
$•    t= 1  \Leftrightarrow  log_x5x= 1  \Leftrightarrow 5=x$
$•    t = 5  \Leftrightarrow  log_x5x = 5 \Leftrightarrow  5 = x^5  \Leftrightarrow  x =\sqrt[{5}]{{5}}$
$c) 9log_3^{(1-2x)}  = 5x^2 – 5 $
Điều kiện: $1- 2x > 0$ $ \Leftrightarrow  x < \frac{1}{2}$
$ \Leftrightarrow {{3}^{{2(lo}{{g}_{3}}}}^{{(1 - 2x))}}=  5x^2 – 5  \Leftrightarrow {{3}^{{lo}{{g}_{3}}}}^{{{{(1 -  2x)}}^{2}}}= 5x^2 – 5$
$ \Leftrightarrow (1- 2x)^2 = 5x^2 – 5$ ( vì  ${{a}^{{lo}{{g}_{a}}{x}}}{ = x}$)
$ \Leftrightarrow $x^2 + 4x – 6 = 0 $ \Leftrightarrow \left[ \begin{array}{l}
{x =  - 2 + }\sqrt {{10}} { > }\frac{{1}}{{2}}{    (}loại{)}\\
{x =  - 2 - }\sqrt {{10}} { < }\frac{{1}}{{2}}{   (}nhậ n{) }
\end{array} \right.$
$d) {{x}^{\frac{{{logx + 7}}}{{4}}}}{ = 1}{{0}^{{logx +  1}}}$
Điều kiện: $x > 0$
$ \Leftrightarrow {log}\left( {{{x}^{\frac{{{logx + 7}}}{{4}}}}}
\right){ = log}\left( {{1}{{0}^{{logx + 1}}}} \right) \Leftrightarrow \left(
{\frac{{{logx + 7}}}{{4}}} \right){logx = logx + 1}$
$\begin{array}{l}
 \Leftrightarrow {{(logx)}^{2}}{ + 3logx - 4 = 0} \Leftrightarrow \left[
\begin{array}{l}
{logx = 1}\\
{logx =  - 4}
\end{array} \right.\\
{*logx = 1} \Leftrightarrow {x = 10}\\
{*logx =  - 4} \Leftrightarrow {x = 1}{{0}^{{ - 4}}}{ =
}\frac{{1}}{{{1}{{0}^{4}}}}
\end{array}$

Thẻ

Lượt xem

2109

Lý thuyết liên quan

Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003