Giải các phương trình sau:
 $a) {2^{{x^2} - 3x + 2}} = 4$   
$b) 3{2^{\frac{{x + 5}}{{x - 7}}}} = 0,25.12{8^{\frac{{x + 17}}{{x - 3}}}}$
$ c) {5^{x - 1}} + {5^{3 - x}} = 26$   
$d)$ $3.{4^x} - 2.{6^x} = {9^x}$
$e) {\left( {\sqrt {7 + \sqrt {48} } } \right)^x} + {\left( {\sqrt {7 - \sqrt {48} } } \right)^x} = 14$
$g) 2^x + 3^x = 5^x$
$a$) Ta có:
${2^{{x^2} - 3x + 2}} = 4 \Leftrightarrow {2^{{x^2} - 3x + 2}} = {2^2} \Leftrightarrow {x^2} -
3x + 2 = 2$
                   $ \Leftrightarrow {x^2} - 3x = 0 \Leftrightarrow x(x - 3) = 0$
                   $ \Leftrightarrow x = 0   \vee   x  = 3$
$b) 3{2^{\frac{{x + 5}}{{x - 7}}}} = 0,25.12{8^{\frac{{x + 17}}{{x - 3}}}}$
 Điều kiện: $\left\{ \begin{array}{l}
x \neq    7\\
x \neq    3
\end{array} \right.$
$ \Leftrightarrow {2^{5\left( {\frac{{x + 5}}{{x - 7}}} \right)}} = \frac{1}{4}.{2^{7\left(
{\frac{{x + 17}}{{x - 3}}} \right)}} \Leftrightarrow {2^{5 + 7\left( {\frac{{x + 5}}{{x - 7}}}
\right)}} = {2^{7\left( {\frac{{x + 17}}{{x - 3}}} \right)}}$
$ \Leftrightarrow 2 + 5\left( {\frac{{x + 5}}{{x - 7}}} \right) = 7\left( {\frac{{x + 17}}{{x - 3}}}
\right)$
$ \Leftrightarrow  2(x-7)(x-3) + 5(x+5)(x-3) = 7(x+17)(x-7)$
$ \Leftrightarrow 2(x^2 – 10x +21) +5(x^2 + 2x – 15) = 7(x^2 + 10x – 119)$
$ \Leftrightarrow x = 10$
$c) {5^{x - 1}} + {5^{3 - x}} = 26$$ \Leftrightarrow $$\frac{{{5^x}}}{5} +
\frac{{125}}{{{5^x}}} = 26  (*)$
Đặt  $t = 5x > 0$
$(*)  \Leftrightarrow \frac{t}{5} + \frac{{125}}{t} = 26 \Leftrightarrow {t^2} - 130t + 625 = 0$
       $ \Leftrightarrow \left\{ \begin{array}{l}
t = 125 > 0\\
t = 5 > 0
\end{array} \right.$
•    $t = 125 \Leftrightarrow {5^x} = {5^3} \Leftrightarrow x = 3$
•    $t = 5 \Leftrightarrow {5^x} = 5 \Leftrightarrow x = 1$
$d)$
$3.4^x-2.6^x=9^x\Leftrightarrow 3-2(\frac{6}{4})^x=(\frac{9}{4})^x\Leftrightarrow 3-2(\frac{3}{2})^x=(\frac{3}{2})^{2x}   (*)$
Đặt: $ t=(\frac{3}{2})^x(t>0)$
$(*)  \Leftrightarrow 3-2t = t2  \Leftrightarrow $ $\begin{array}{l}
{t^2} +  2t - 3  =  0\\
(a + b + c = 0)
\end{array}$ $ \Leftrightarrow $$\left[ \begin{array}{l}t=1\\t=-3 (loạ i) \end{array} \right.$
Với $t = 1  \Leftrightarrow $${\left( {\frac{3}{2}} \right)^x}$= ${\left( {\frac{3}{2}}
\right)^0}$$ \Leftrightarrow x=0$
$e) {\left( {\sqrt {7 + \sqrt {48} } } \right)^x} + {\left( {\sqrt {7 - \sqrt {48} } } \right)^x} = 14  (*)$
Ta có: $\sqrt {7 + \sqrt {48} } $.$\sqrt {7 - \sqrt {48} } $=1$ \Leftrightarrow $$\sqrt {7 - \sqrt
{48} } $=$\frac{1}{{\sqrt {7 + \sqrt {48} } }}$
Đặt: t = ${\left( {\sqrt {7 + \sqrt {48} } } \right)^x}   (t>0) $ $\Rightarrow (\sqrt{7-\sqrt{48}})^x=1/t$
$(1)  \Leftrightarrow t+\frac{1}{t}=14  \Leftrightarrow t^2 -14t +1 =0  \Leftrightarrow $
$\left[ \begin{array}{l}
t = 7 + \sqrt {48}  > 0\\
t = 7 - \sqrt {48}  > 0
\end{array} \right.$
•    $t = 7 + \sqrt {48}  = {\left( {\sqrt {7 + \sqrt {48} } } \right)^2}$, ta được:
${\left( {\sqrt {7 + \sqrt {48} } } \right)^x}$=${\left( {\sqrt {7 + \sqrt {48} } } \right)^2}$$
\Leftrightarrow $x = 2
•    $t = 7 - \sqrt {48}  = \frac{1}{{7 + \sqrt {48} }} = \frac{1}{{{{\left( {\sqrt {7 + \sqrt
{48} } } \right)}^2}}} = {\left( {\sqrt {7 + \sqrt {48} } } \right)^{ - 2}}$
Ta được: ${\left( {\sqrt {7 + \sqrt {48} } } \right)^x}={\left( {\sqrt {7 + \sqrt {48} } }
\right)^{ - 2}} \Leftrightarrow x = -2$
Vậy phương trình ($1$) có $2$ nghiệm: $x =  \pm 2$
$g) 2^x + 3^x = 5^x$$ \Leftrightarrow (\frac{2}{5})^x+(\frac{3}{5})^x=1      (*)$
Ta nhận thấy $(*)$ có $1$ nghiệm $x = 1.$
Thật vậy: $\Leftrightarrow (\frac{2}{5})^1+(\frac{3}{5})^1=1$
Ta chứng minh $x = 1$ duy nhất.
Vì cơ số: $a = \frac{2}{5}$ với $0 < a<1$
$ \Rightarrow $Vế trái là hàm số nghịch biến
    Vế phải là hằng số
Nên nghiệm $x = 1$ duy nhất.

Thẻ

Lượt xem

1302

Lý thuyết liên quan

Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003