Giải các hệ phương trình sau:
a/ $\begin{cases}\frac{x+3}{y-4}-\frac{x-1}{y+4}+\frac{16}{y^{2}-16}=0 \\ 11x-3y=1\end{cases}$
b/ $\begin{cases}2y^{2}+xy-x^{2}=0 \\ x^{2}-xy-y^{2}+3x+7y+3=0 \end{cases}$
c/$\begin{cases}xy+3y^{2}-x+4y-7=0 \\ 2xy+y^{2}-2x-2y+1=0 \end{cases}$
d/$\begin{cases}xy-3x-2y=16 \\ x^{2}+y^{2}-2x-4y=33 \end{cases}$
e/ $\begin{cases}x-\frac{1}{x}=y-\frac{1}{y} \\ 2y=x^{3}+1 \end{cases}$
a/ $\begin{cases}\frac{x+3}{y-4}-\frac{x-1}{y+4}+\frac{16}{y^{2}-16}=0 (1) \\ 11x-3y=1 (2)\end{cases}$
Thế $y=\frac{11x-1}{3}$ vào \((1)\):
$\frac{x+3}{\frac{11x-1}{3}-4}-\frac{x-1}{\frac{11x-1}{3}+4}+\frac{16}{\left(\frac{11x-1}{3}\right)^{2}-16}=0$
$\Leftrightarrow  \frac{3\left(x+3\right)}{11x-13}-\frac{3\left(x-1\right)}{11x+11}+\frac{144}{\left(11x-13\right)\left(11x+11\right)}=0$
$\Leftrightarrow \frac{\left(x+3\right)}{11x-13}-\frac{\left(x-1\right)}{11x+11}+\frac{48}{\left(11x-13\right)\left(11x+11\right)}=0$
điều kiện: $x\neq -1, x\neq \frac{13}{11}, y\neq \pm 4$
với điều kiện trên, biến đổi phương trình:
$\left(x+3\right)\left(11x+11\right)-\left(x-1\right)\left(11x-13\right)+48=0$
$\Leftrightarrow 11x^{2}+44x+33-11x^{2}+24x-13+48=0$
$\Leftrightarrow 68x+68=0\Leftrightarrow x=-1$: hệ vô nghiệm

b/ $\begin{cases}2y^{2}+xy-x^{2}=0 (1)\\ x^{2}-xy-y^{2}+3x+7y+3=0 (2)\end{cases}$
$(1)\Leftrightarrow y^{2}+xy+y^{2}-x^{2}=0\Leftrightarrow y\left(y+x\right)+\left(y+x\right)\left(y-x\right)=0$ $\Leftrightarrow \left(y+x\right)\left(2y-x\right)=0$
$\Leftrightarrow \left[ \begin{array}{l}y = -x\\y=\frac{x}{2}\end{array} \right.$
Thế $y=-x$ vào $(2)$:
$x^{2}-x\left(-x\right)-\left(-x\right)^{2}+3x+7\left(-x\right)+3=0\Leftrightarrow x^{2}-4x+3=0$ $\Leftrightarrow \left[ \begin{array}{l}x = 1\Rightarrow y=-1\\x=3 \Rightarrow  y=-3\end{array} \right.$
thế $y=\frac{x}{2}$ vào $(2)$:
$x^{2}-x\left(\frac{x}{2}\right)-\left(\frac{x}{2}\right)^{2}+3x+7\left(\frac{x}{2}\right)+3=0\Leftrightarrow \frac{x^{2}}{4}+\frac{13x}{2}+3=0$
$ \Leftrightarrow \left[  \begin{array}{l}x = -13-\sqrt{157} \Rightarrow \frac{ -13-\sqrt{157}}{2}\\x= -13+\sqrt{157} \Rightarrow  y=\frac{ -13+\sqrt{157}}{2}\end{array} \right.$

c/$\begin{cases}xy+3y^{2}-x+4y-7=0 (1)\\ 2xy+y^{2}-2x-2y+1=0 (2)\end{cases}$
$(2)\Leftrightarrow y^{2}+2\left(x-1\right)y+1-2x=0\Leftrightarrow \left[ \begin{array}{l}y=1\\y = 1-2x\end{array} \right.$
Thế $y=1$ vào $(1): x+3-x+4-7=0$ Đúng $\forall x \in R$
$y=1-2x\Rightarrow (1): x\left(1-2x\right)+3\left(1-2x\right)^{2}-x+4\left(1-2x\right)-7=0$
$\Leftrightarrow x-2x^{2}+3-12x+12x^{2}-x+4-8x-7=0\Leftrightarrow 10x^{2}-20x=0$
$\Leftrightarrow x=0, x=2\Rightarrow  y=1, y=-3$

d/$\begin{cases}xy-3x-2y=16 \\ x^{2}+y^{2}-2x-4y=33 \end{cases}\Leftrightarrow \begin{cases}2xy-6x-6y=32(1) \\ x^{2}+y^{2}-2x-4y=33(2) \end{cases}$
Cộng từng vế:  $\left(x+y\right)^{2}-8\left(x+y\right)-65=0$
$\Leftrightarrow \left[ \begin{array}{l}x+y = -5\\ x+y=13\end{array} \right.\Leftrightarrow \left[ \begin{array}{l}y=-x-5\\y = 13-x\end{array} \right.$ thế vào $(1)$:
$\left[ \begin{array}{l}2x\left(-x-5\right) -6x-6\left(-x-5\right)-32=0\\2x \left(13-x\right)-6x-6\left(13-x\right)-32=0\end{array} \right.\Leftrightarrow \left[ \begin{array}{l}x^{2}+5x+1=0\\ x^{2}-13x+55=0\end{array} \right.$
$\Leftrightarrow \left[ \begin{array}{l}x = \frac{-5-\sqrt{21}}{2}, x=\frac{-5+\sqrt{21}}{2}\\x=\Phi\end{array} \right.$
$\Rightarrow y=\frac{5+\sqrt{21}}{2}-5=\frac{-5+\sqrt{21}}{2}, y=\frac{5-\sqrt{21}}{2}-5=\frac{-5-\sqrt{21}}{2}$

e/ $\begin{cases}x-\frac{1}{x}=y-\frac{1}{y} (1)\\ 2y=x^{3}+1 (2)\end{cases}$
điều kiện: $x\neq 0, y\neq 0$
$(1)\Leftrightarrow x-y=\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}\Leftrightarrow \left(x-y\right)\left(1+\frac{1}{xy}\right)=0$
$\Leftrightarrow \left[ \begin{array}{l}x = y\\xy =-1\end{array} \right.$
Thế $y=x$ vào $(2): 2x=x^{3}+1\Leftrightarrow  x^{3}-2x+1=0$
$\Leftrightarrow \left(x^{3}-1\right)-2\left(x-1\right)=0 \Leftrightarrow \left(x-1\right)\left(x^{2}+x+1-2\right)=0$
$\Leftrightarrow x=1, x=\frac{-1-\sqrt{5}}{2}, x=\frac{-1+\sqrt{5}}{2}$
$\Rightarrow y=1, y=\frac{-1-\sqrt{5}}{2}, y=\frac{-1+\sqrt{5}}{2}$
$xy=-1\Rightarrow y=\frac{-1}{x}$ thế vào $(2): 2\left(\frac{-1}{x}\right)=x^{3}+1$
$\Leftrightarrow \left(x^{4}-x^{2}+1\right)+\left(x^{2}+x+1\right)=0 (*)$
$x^{4}-x^{2}+1= \left(x^{2}-\frac{1}{x}\right)^{2}+\frac{3}{4} \geq \frac{3}{4}$
$ x^{2}+x+1=\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4} \geq \frac{3}{4}$
$\Rightarrow  \left(x^{4}-x^{2}+1\right)+\left(x^{2}+x+1\right)>\frac{3}{2}: (*)$ vô nghiệm

Thẻ

Lượt xem

1836
Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003