Giải các phương trình mũ :
$a)$ ${9^{{x^2} + 1}} - {3^{{x^2} + 1}} - 6 = 0$    ;   
$b)$ ${9^{{x^2} + 1}} - 3{6^{{x^2} - 3}} + 3 = 0$
$c)$ ${\left( {\sqrt[5]{3}} \right)^x} + {\left( {\sqrt[{10}]{3}} \right)^{x - 10}}- 84 = 0    ;     $
$d)$ ${4^{x + \sqrt {{x^2} - 2} }} - 5.2^{x - 1 + \sqrt {x^2 - 2}}  = 64$.
$a) {9^{{x^2} + 1}} - {3^{{x^2} + 1}} - 6 = 0$ $ \Leftrightarrow $  ${3^{2({x^2} + 1)}} -
{3^{{x^2} + 1}} - 6 = 0    (*)$
Đặt: u = ${3^{{x^2} + 1}} > 0, (*$)$ \Leftrightarrow   u2 – u – 6 = 0 $
$ \Rightarrow u1 = 3, u2 = -2< 0 $ (loại)
$ \Rightarrow $ ${3^{{x^2} + 1}} = 3$ $ \Leftrightarrow x^2 + 1 = 1$ $ \Leftrightarrow  x^2 = 0$
$b$) ${9^{{x^2} + 1}} - 3{6^{{x^2} - 3}} + 3 = 0$ $ \Leftrightarrow $${\left( {{3^{{x^2} - 1}}}
\right)^2} - \frac{{36.{3^{{x^2} - 1}}}}{9} + 3 = 0$
 $ \Leftrightarrow $${\left( {{3^{{x^2} - 1}}} \right)^2} -
4.{3^{{x^2} - 1}} + 3 = 0$
Đặt: $u = {3^{{x^2} + 1}}$> , (*)$ \Leftrightarrow u^2 – 4u + 3 = 0$
có dạng: $a + b + c = 0  \Leftrightarrow  u_1 = 1, u_2  = 3$
•    $u = 1: {3^{{x^2} + 1}}= 1 =30  \Leftrightarrow  x^2 – 1 = 0  \Leftrightarrow x = ±1$
•    $u = 3 : {3^{{x^2} + 1}} = 3   \Leftrightarrow  x^2 – 1 = 1  \Leftrightarrow x^2 = 2 $$ \Leftrightarrow $ x = ±$\sqrt 2 $
Vậy nghiệm số:$ ±1, ±\sqrt 2 $
$c)$ ${\left( {\sqrt[5]{3}} \right)^x} + {\left( {\sqrt[{10}]{3}} \right)^{x - 10}}- 84 = 0$
$ \Leftrightarrow {\left[ {{{\left( {\sqrt[{10}]{3}} \right)}^x}} \right]^x} + {\left(
{\sqrt[{10}]{3}} \right)^x}.{\left( {\sqrt[{10}]{3}} \right)^{ - 10}}+ 84 = 0$
$ - \frac{{28}}{3}- 84 = 0    (*)$
Đặt: u = ${\left( {\sqrt[{10}]{3}} \right)^x}>0$
$(*)  \Leftrightarrow {u^2} + \frac{u}{3} - 84 = 0 \Leftrightarrow  3u2 + u – 252 = 0$
      $ \Leftrightarrow u1 = 9 >0, u2 =  - \frac{{28}}{3}<0 $ (loại)
      $ \Rightarrow {\left( {\sqrt[{10}]{3}} \right)^x} = 9 \Leftrightarrow
{3^{\frac{x}{{10}}}} = {3^2} \Leftrightarrow \frac{x}{{10}} = 2 \Leftrightarrow x = 20$
$d$) ${4^{x + \sqrt {{x^2} - 2} }} - 5.{2^{x - 1}} + \sqrt {{x^2} - 2}  = 64$.
Điều kiện: $x^2 – 2 ≥ 0  \Leftrightarrow $ x $ \le  - \sqrt 2 $ $ \vee $  x $ \ge \sqrt 2 $
$\begin{array}{l}
 \Leftrightarrow {\left( {{x^{x + \sqrt {{x^2} - 2} }}} \right)^2} - \frac{5}{2}.{2^{x - 1 + \sqrt
{{x^2} - 2} }} + 1 \Leftrightarrow 2 - x = \sqrt {{x^2} - 2}  - 6 = 0\\
\left[ \begin{array}{l}
u = 4\\
u =  - \frac{3}{2}    ( loại )
\end{array} \right.\\
{2^{{x^2} - 1}} - 3{x^2} = {3^{{x^2} - 1}} - {2^{{x^2} + 2}}
\end{array}   (*) $
Đặt: $u = {2^{x - 1 + \sqrt {{x^2} - 2} }}>0$
$(*) u2 - \frac{5}{2} - 6 = 0  \Leftrightarrow 2u^2 – 5u – 12 = 0$
$ \Leftrightarrow \left[ \begin{array}{l}
u = 4\\
u =  - \frac{3}{2}    (loại)
\end{array} \right.$
$u = 4  \Leftrightarrow {2^{x - 1 + \sqrt {{x^2} - 2} }} =2^2  \Leftrightarrow x + \sqrt
{{x^2} - 2} =2  \Leftrightarrow 2 - x = \sqrt {{x^2} - 2} $
 $ \Leftrightarrow x = \frac{3}{2}$ nhận vì thỏa mãn điều kiện x $ \le  - \sqrt 2
{\rm{ }} \vee $ x $ \ge \sqrt 2 $

Thẻ

Lượt xem

948

Lý thuyết liên quan

Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003